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Abstract. In any individual FRF plot of a rotor, the negative frequency region of the FRF is
merely a duplicate of the positive frequency region. Therefore, it is only necessary to treat
with one region of the FRF, conventionally the positive one, because it yields some physical
meaning. Thus, the directivity of a mode, forward or backward, generally cannot be easily
distinguishable in frequency domain through the use of traditional modal analysis in rotors.
The complex modal analysis is related with the application of classical modal analysis
principles to rotating systems, where the inputs and outputs are described by complex
variables. The advantage of this methodology, in comparison with the traditional modal
analysis in rotors, is the ability of incorporating directionality. The method separates the
backward and forward modes in the dFRF (Directional Frequency Response Function), so
that effective modal parameter identification is possible. In this paper, both theories of
traditional and complex modal analysis are revised. Aspects of numerical modeling are
discussed and numerical results are presented. Special attention is paid to the identification
of forward and backward precessional modes of isotropic and anisotropic rotor finite element
models in both FRF and dFRF plots.
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1 INTRODUCTION

The concepts of traditional modal analysis in stationary structures have been applied in
the analysis of rotating structures. However, the analysis requires a more general theoretical
development. Due the rotation, gyroscopic effects appear resulting in non symmetric matrices
in the equations of motion of the system and, as consequence the FRF (Frequency Response
Function) matrix does not obey the Maxwell’s reciprocity theorem. Although each column of
the FRF matrix still contains the necessary information to obtain the mode shapes of the
system, i.e., the right-hand eigenvectors, each row also contains information about a different
set of eigenvectors, these known as left-hand eigenvectors. To characterize the complete
dynamic properties of the system, both eigenvectors must be known, therefore, it will be
necessary to measure at least one row and one column of the FRF matrix, increasing the
number of the measurements that would be necessary for a modal test in a non-rotating
structure'.

In any individual FRF plot of a rotor, the negative frequency region of the FRF is merely
a duplicate of the positive frequency region. Therefore, it is only necessary to deal with one
region of the FRF, conventionally the positive one, because it yields some physical meaning.
Thus, the directivity of a mode, forward or backward, generally cannot be easily
distinguishable in frequency domain through the use of traditional modal analysis in rotors.
The complex modal analysis is related with the application of classical modal analysis
principles to rotating systems, where the inputs and outputs are described by complex
variables. The advantage of this methodology, in comparison with the traditional modal
analysis in rotors, is the ability of incorporating directionality. The method separates the
backward and forward modes in the dFRF (Directional Frequency Response Function), so
that effective modal parameter identification is possible. In addition, another advantage of this
method is that, for isotropic rotors, there are not requirements for additional tests in order to
identify the right and left eigenvectorsz’S. The method of complex modal analysis was first
developed by Lee®” and treated in another papers from Lee and his co-workers** and was
revised in the papers from Kessler and Kim™®,

In this paper, both theories of traditional and complex modal analysis are revised. Aspects
of numerical modeling are discussed and numerical results are presented. Special attention is
paid to the identification of forward and backward precessional modes of isotropic and
anisotropic rotor finite element models in both FRF and dFRF plots.

2 TRADITIONAL MODAL ANALYSIS IN ROTOR - THEORY

The equation of motion of a rotor-bearing system with N station may be written as

G ([0 [
M D K =
[ ]{{'z'}}” ]{{z'}}” ]{{z}} {{fz}} W

where [M] is the symmetric, positive definite mass matrix. [D] and [K] are rotational speed
dependent matrices and, in general, are not neither symmetric nor positive definite. Matrix
[D] represents the damping (internal, bearings and surrounding environment) and gyroscopic

2228



A. L. A. Mesquita, M. Dias Jr. and U. A. Miranda

terms and matrix [K] includes the stiffness and circulatory (internal damping, bearings and
surrounding environment) terms. The response vector of length 2Nx1 is divided into two
orthogonal vectors {y} and {z}, where each entry in these vectors can represent linear or
angular displacement. They define the motion in a plane orthogonal to the bearings axis at
each one of the N rotor stations. The vectors {f,} and {f-} are the force vectors acting in the y
and z directions, respectively.

The equation of motion (1) can be rewritten in space state form as

(410w} - [Bl{w} = {0} @)

[0] [M] [M] [0] (0} Uﬁ} Fﬂ} {w%
A= [B]= A0} = Fy= =1 gy =
[]LMWJ[]{WLWJ@}iﬂF}{Qﬁ{M @ \mf @

The matrices [4] and [B] are real, nonsymmetrical, and indefinite in general, resulting in a
non-self-adjoint eigenvalue problem. The eigenvalue problems associated with equation (2)
are

(ALA1-[BD{w} =10} and (A[4)" ~[B1"){¢}= (0} ()

The 4N eigenvalues, A, of the eigenproblems above are the same. If the system is
underdamped, the eigenvalues and the eigenvector appear in complex conjugate pairs. The
eigenvectors of the eigenproblems (4) are the vectors {r} and {{} and are known as right and
left eigenvectors, respectively, and given as

{1t 5]

The vectors {u} and {v} are the eigenvectors of the eigenproblems
(A2 [M1+ A[D]+[KDiu} = {0} and (A2 [M]T + A[D]T +[K17){v}= {0}, respectively.
The right and left eigenvectors may be biorthonormalised as

nl4 =5 i
{ }IT[ ]{W}I ir , where 5,7 :{0, l. r (6)
(i [Bl{y}, = 4,6y, L 1#T
To uncouple the equation of motion (2), the following coordinate transformation is done
4N
=11 =Y Wi, -

r=1

where {n} is known as state principal coordinates vector. Substituting equation (7) into
equation (2) and pre-multiplying by [L]" , where [L] =[{¢}; {3 - {}4n], we have the
uncouple equation of motion and its respective response as
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_ 0o
(]CU _/1}’)

Substituting the response in (8) into equation (7) leads to

N ), 4007 Ny, 7
{}Z(wm or {}Z G5

{{Y(a))}} z{u} Sl {{Fy(w)}}:[H(w)]{{Fy(w)}}
{Z(w)}) ‘T(o-21,) [{F,(0)} {F; (o)}

Thus we can define the frequency response function matrix as

Ny, il &y, !l @y, ]
= Z( -2 _,Z:I(jw—m (oo r)]

{{uy}} {{vy}}T {{uy}} {{vy}}T
ZZZN waf, Lo, ), L,

r=1 (jw_ﬂ’r) (]w_zr)

Ay =2y, =01 4O 5 7

then

®)

©

(10

(11

where the elements of the {u,} are related to the displacement of each degree of freedom in
the direction y and the elements of the {u.} are related to the displacement of each degree of
freedom in the direction z. Here the bar denotes the complex conjugate. The same idea holds

to the elements of the eigenvector {v}. The expression for an individual FRF is given

4 2 - =
H. (a)) _ ZN UipVig — ZN UirVir + uirvki
BT S Go-2) " ZlGo-4,) (o-7)

Another way to visualize the FRF matrix is shown below

()i} (ur)Vp2} - @)(Ve2N}
(u2)(vy1} (u2)Vp2} - (ue)Vy2nt

[H(@)]=,

r=1

(io=12,) [H 2y (@)] [Hzz(@)]

According to equation (11) the sub-matrices in [H(w)] can be written as
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R T A o A TR {720 W (V0 A T o o4
)= 2 i) Ga=gy | T 2 Ga—an) t Go-)

(14)

_2N {uz}r{vy}}z; {ﬁz}r{vy}z: ) _2N {”z}r{vz}z: {Ez}r{vz}z
[sz]_,gl (jw_/ir) ' (]w_zr) ’[HZZ]_,Z:] (jw_/lr) " (Jw_zr)

In the equation (13) we can see that each column of the numerator contains the same
modal vector (right eigenvector) multiplied by a component of the left eigenvector and each
row contains the same left eigenvector multiplied by a component of the modal vector. Thus,
the modal information is completely identified if one row and one column of the 2Nx2N FRF
matrix have been identified. Therefore the number of measurement is larger than the
traditional modal analysis in non-rotating structures, i.e., it is necessary to measure at least
4N-1 FRFs in a rotor with N stations.

From equation (12) we can see that

Hy(-0)=Hy (@) - [H(-0)]=[H@)] (15)

The equation (15) implies that the negative frequency region of the FRF is merely a
duplicate of the positive frequency region. Therefore is necessary only treating with one
region of the FRF, that conventionally the positive region is used, because it has a physical
meaning. Thus the directivity of a mode such as forward or backward cannot be
distinguishable in frequency domain in the methodology of traditional (or classical) modal
analysis in rotors.

3 COMPLEX DESCRIPTION OF THE PLANAR MOTION

The displacement of the center of the rotor in each station can be descript as a complex
variable with real and imaginary parts the displacements in the directions y and z,
respectively.

0 . .
p()=y(0)+j z(t) = Z(Ykef“’kf +jzkef“’kf) (16)
k:—OO
Expanding y(¢) and z(¢) by their complex Fourier series result in
p(0) = Z[(Ykef“’k’ + Y e /O )+ j(zkef‘“k’ + Zye IOk )] (17a)
k=0

0 X . 7 . 0 . .
p(t) = Z[(Yk +jZi) e + (1, +jzk)e*""“] = Z(Pfk e/ 4 Py e’f‘”“) (17b)
k=0 k=0
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0 . .
pt) = Z (| Pfk ‘ej(wkHak)HPbk |e*J(a’kf+ﬁk)) (17¢)
k=0

The equation (17) shows that any planar motion of one station can be considered as a
superposition of various complex harmonic motions with different frequencies. The ¢ terms
represent the vectors that are rotating forward (in the direction of rotation), and the e’ terms
represent vectors that are rotating backward (in the opposite direction of rotation). In a
specific frequency, oy, the complex displacement is

pt) =Py, o/ Okt + Py, e @kt =| Py, |ej(wkt+ak)+ | Py |e—j(wkf+ﬂk) (18)

The sums of the two circular contra-rotating vectors, rotating at the same frequency, but
each one with different amplitude and angle phase, forms an ellipse in the complex plane
(Figure 1), i.e., the elliptical shape is the sum of two circular orbits: one forward and other
backward. |P{ and |P;| are the radiuses of the forward and backward orbits; o4 and S are the
phases of forward and backward responses. The major axis is |P] + |P| and the minor axis is
|P{ - |Ps|. Forward precession of the elliptical orbit means that |P{ > |Py|, while forward
precessions means that [P < |Py|. The ellipse degenerate into a circular forward orbit if |P,| =
0 or into a circular backward if |P| = 0. If the ellipse degenerate into a straight line, then |P/| =
|Py|. The angle between the horizontal axis and ellipse major axis is (S -&)/2. In the Figure 2
we can see two orbits, each one filtered in a specific frequency, and the full spectrum of the
complex signal. We can note that the two backward components in the negative region of
frequency are smaller than the respective forward component in the positive region of
frequency, thus we can conclude that the two ellipses are of forward precession'” .

Here we can realize the advantage of the full spectrum in relation to half spectrum. When
we have only one signal in the time domain, the FFT of this signal will show up the negative
region of frequency exactly the mirror of the positive one. Now, when we have two
orthogonal signals that we can form a complex signal like equation (18), its FFT brings
additional information in the negative region of frequency, so they are not the mirror of the
positive half. In the case of signals of orthogonal probes of rotors, the full spectrum can show
whether the rotor orbit components are forward or backward in relation to the directioin of
rotor vibration’.

(L)

‘.:_’UJ

o >
SN

Figure 1 — Orbit (Locus of p(#)) of one Station of the Rotor Described for Two Rotating Vector.
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Figure 2: (a) Orbit of a Rotor Station where the Response is Composed by Two Harmonics; (b) Orbit Filtered
(1X); (c) Orbit Filtered (2X); (d) Full Spectrum.

4 COMPLEX MODAL ANALYSIS

As shown in anterior section the planar motion of one station can be described by
p@)=y(t)+ jz(¢). Regarding the complex conjugate, the motion can be described, in
{pm}:'l ./} {ym}
r®) 1 4]z

yo_1) b 1ip@)
{z@)}"z{j j}{p<n} (4
For N stations, the equation (21) becomes

{wm?:;n 'mem?oz¥ﬂm}qﬂ¥mm} 0
{z0}) 241 jULUP®} {z(0} {p(0)}

Thus, [7] is defined as the transformation matrix between the real and complex
representation and [/] denotes the NxN identity matrix.

Similarly, the excitation in complex coordinates is written as g(f) = fi(¢) + j f(?). In
matricial form it is written as

matricial form, as

—
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{{fy@}}: 1 { [1] [I]H{g(t)}} _ {{fﬂt)}}:[ﬂ{{g(r)}} on
vzon] 2l snllEey ey e

Substituting equations (22) and (23) into equation (1) leads to

{ﬁ}} = {{p}} = {{p}}_ = {{ }}
gy (TIVDITR o+ T IKITY 2 =TT T o (22a)

e I

where [M,], [D,] and [K,] are composed by complex elements given by

(1] j[l]wMyyl[Myz]} 1 { (1] [IJH[M 7] [Mb]}

(71! [M][T]{

[M,]=[TT ' [M][T] {

(] UM 1M 2] | 2[5 117 11]] | [Mp] [M /]
(23)
(D] [Dy] [K 11K
D= 7 K=
(D] (D] [Kp] [K /]
where
2[M )= (M ) +[M ) - j(IM .1~ [M ) o0

2[Mp )= (M yy ] =[M D)+ J([IM ), 1+[M 5, ])

and the same structure is valid for [D/], [Dp], [K/] and [Kp].
The Fourier transforms of {p(¢)}, {p(¢)}, {g(¥)} and {g(¢)} are {P(w)}, {f’(a))},

{G(w)} and {G(a))} , respectively. Thus, equation (22b) can be written as

(P(@))} P@)})]  [{G()
ot viotp )+ Nie@n ~ P MNibon) " liéy =
(P(@)} L {{G(w)}} . {{G(m)}}
N =[B N =[H - 26
{{P(w)}} PO eon] M M6y (26)
{{P(a))}}_ [H g @)] [H 3 (@) {{G(w)}} ”
By |[H pg(@)] [H pg (@] (G(0)) @7)

The sub-matrices in the complex frequency response matrix [H “(w)] are called directional
frequency response matrices (dFRMs) and its elements are called directional frequency
response functions (dFRFs) because they implicitly include directionality. The dFRMs
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[H g (0)] and[H 5 (@)] relate excitations and responses of the same direction and its
elements are referred as “normal dFRFs” (normal forward and normal backward,
respectively). The dFRMs [H ,;(@)]and[H jq(@)] relate excitations and responses in

opposite directions and its elements are referred as “reverse dFRFs”.

According to equations (20), (21) and (27) we obtain the following relations between the
FRFs and the dFRFs
and substituting the equation above into equation (29) leads to

{[H pg(@)] [H ps (@]1 ! {[H w(@)] [Hy, (w)]} -

28

[H s (@)] [H 35 ()] [H o (@)] [Hy(@)] (28)
2[H g ()] = [H ()] + [Ho(@)] = ] ((H o ()]~ [y (@)]

2[H g ()] = [H ()]~ [Ho(@)]+ ] ((H ()] + [y (@)] .

2[H g ()] = [H 1 ()]~ [H ()] - J ([ H 2 (@)] + [ H oy ()] @)
2[H g ()] = [H ()] + [Ho(@)]+ ] ((H ()]~ [y (@)]

According to equations (15) and (29), it can be conclude that
[H g ()] =[H g (~0)] and  [H pg(@0)]=[H pg (~0)] (30)

Therefore we can conclude that if only positive frequencies are considered, the four sub-
matrices are needed to represent the same information as in real modal analysis. However, if
negative frequencies are considered too, only two sub-matrices suffice to represent all
information. Usually [H . (@)] and [H ,3(@)] are considered. Thus, considering two-side

dFRFs we can rewrite the equation (27) as

{P(w)} {G(@)}
[H pg (@)] [H pg(@)]f 31
{{m )}} i ‘”‘g %{G(w)}} o
The equation (22b) can be rewritten in the state space form as
[4a v 1= [Ba Twa )= {00} (32)

[0] [M,] [Mg]10 10}
4 = B]=
[Aalanxan |:[Ma][Da]:|’[ ] Lo] -[K,] }{Q‘l} {{Fa}}

(g0} da} (1)}
Fl= = -
tal {{gm}}’{%} {{qa}}’{qa} {{p(m}

The complex matrices [4,] and [B,] are indefinite, non-Hermetian in general, resulting in a
non-self eigenvalue problem. The eigenvalue problems associated with equation (32) are

(33)
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(A4, 1~ By Diwa =10} and (A[4,1 ~[B, 1" Wt o} =10} (34)

where the right and left eigenvectors are

 [Mug} Mg}
ad={ e} )= o9

The vectors {u,} and {v,} are the eigenvectors of the following eigenvalue problems
(Z[M 1+ AD1+[K o Dlua = 0}

. 36
AP M 1" + D1 +1K 1 ){ve = {0} o

Due the matrices [4,] and [B,] (as well as the matrices [M,], [D,] and [K,]) are complex
and non-Hermetian, we have the most general case of eigenvalue problem. Now, the
questions are: the superposition principle still holds here? In other words, the orthogonality
properties of the eigenvectors in relation to [4,] and [B,] are still valid? The eigenvalues and
eigenvectors will appear in conjugate complex? The answers were found in the book of
Lancaster'’, where the author says that in this case the orthogonality properties and
consequently the superposition principle are valid. Lancaster also says that the eigenvalues
will appear in complex conjugate pairs but it is not necessarily true for the eigenvectors!

It was cited by Joh and Lee’ and repeated in Appendix A that in this case, the right and left
eigenvectors corresponding to eigenvalues A, and A, of the eigenproblem of the equation

(36) are

e, e =t B
A =>{u,} = {{ﬁc}},{va} —{{90 }} and A= {{uc}},{{vc}} (37)

where the symbol () denotes that the complex elements in {ii.} are the same of {u,.} with
the exception of the sign of the imaginary part, as we going to see latter. We can note that the
eigenvector corresponding to complex conjugate of the eigenvalue is not merely the complex
conjugate of the original eigenvector {u,}, but it is composed by the complex conjugate of
its terms ({u,.} and {&1.}) when they are in changed position.

Thus, in the procedure similar to equation (7) to (11) we obtain the complex frequency
response matrix written in terms of modal parameters

T ~ = T

{{uc}} {{vc}} {{uc}} {{vc}}

PR L S P M
[HE (@)=Y e R

r=1

(3%)
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According to equations (27) and (38) the dFRM blocks are written as

2N T -~ =T 2N AT ~ =T
[Hpg]:z[{uc}r{ve}r +{uc}r{vc},ﬂ} ; [Hpg]:z[{uc}r{vc}r +{uc}r{v0}rJ

r=1 (Jw_/lr) (]a)_j“r) (]w_lr) (Ja)_zr)

r=1

(39

r=1

2N( ¢n T — T 2N ¢~ AT — - T
1 fuctpvelr  lucl elr | . T ey, edr | Aued velr
[H”g]_z{ Go2) (jw—zr)] ] 21( Go-24) (jw—ﬁr)]

Analyzing the expressions in (39), it can be showed* that to identify all modal parameters,

it is necessary to measure at least one single column (row) of [H ,, (@)] as well as one single

row (column) of [H ()], which are arbitrarily chosen from the dFRF matrices. It implies

that for a anisotropic rotor with N stations, it is necessary measure 2N dFRFs for
identification of all modal parameters.

The relations between the elements of the modal vectors from both methodology (real and
complex) can be found substituting the equation (14) and (39) into equation (29). Using the
first relation in (29) we obtain (suppressing the subindex r)

2({uc}{vcﬂ a7 )30 s sl " - e 0,7

(jo-2)  (jo-2) (jo—2)

T i )T ey e s ,07)
(jo—2)

(40)

and the equation (40) leads to
1

V2
1

V2

Therefore, according to (41) the vector {ii.} is different from the vector {u.} only in

et =y 1+ ) and boi=plni-iv) e
1

fie} ==t - fuz) and o= lyi o) @

respect of the sign of the imaginary part, as already mentioned. The vector {ii.} is not the
complex conjugate of {u.} because the vectors {u,} and {u,} are complex.

If the rotor is isotropic its dynamic properties are the same in any direction. Therefore

[Myy]:[MZZ]:[Ml] [Myz]:_[sz]:[M2]
[Dyy1=[D2:1=[Dy] . [Dy1=-1Dy1=[Dy] )
K 1= [K-1= (K1) (K 1= 1K 1= (K]
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Then, according to equation (24) we have

[Mp]=[Dp]=[Kp]1=[0] (43)
Rewrite the equations (36) using equations (23), (37) and (43)
M 1[0 D10 K110
PERICIERICINERIC {{76}}:{{0}} s
1071|101 151|101 1K 1| Ltied] ~ Loy
M0 D110 K100
oMoy i .fljl K /1 101]" {{gc}}_{w}} (ab)
[0] [M f] (0] [Df] 0] [K 1] |0} ({0}
Thus, it leads to
{ic}=0=fuy}—ju}={0} and . }=0= {v, }+/{v,}={0} (45)
Using equations (45) and (41a) yields
et =24y} =2 {up} and (v} =2 {v,} =2 {vo} (46)
Substituting equations (45) and (46) in equation (39) we obtain
[H ()] = zz[{”‘)} fV;};J and  [Hpg(0)]=0 @)

The equation (47) can be rewritten as

{ug},r{vor {uo}r{volr -
[H pel= 22( Go—i) J for >0 and [H,,]= 22[ o) ] for <0 (48)

The over scripts F and B denote forward and backward modes.

As shown in (48), forward (backward) modes are excited by only forward (backward)
excitations, i.e., the forward (backward) modes appear in only the positive (negative)
frequency region. If some anisotropy of bearings are permitted, backward (forward) modes
start to be excited by forward (backward) rotating excitations. The magnitude of the dFRF of
forward (backward) modes in the negative (positive) frequency region indicates the strength
of the system anisotropy. Even if the anisotropy of the system is great, the magnitudes of the
FRF of the forward (backward) modes in positive frequency region are greater (smaller) or
equal than those in negative frequency region®. It is the same idea as shown in section 3.

5 CONSIDERATIONS ABOUT NUMERICAL IMPLEMENTATION

One of the objectives of this work was to develop a finite element code, which could use
both formulations real and complex. The matrices of the finite elements implemented in the
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code were obtained from Nelson and McVaugh''. However, if the transformation matrix of
real to complex coordinates (presented in the equation (20)) were used, obtained from Lee™,
a problem of incompatibility of the directions of the degrees of freedom would happen. The
Figure 3a presents the degrees of freedom of the beam element used by Lee'? where he uses
an orientation of the degrees of freedom not usual. The Figure 3b presents the directions of
the degrees of freedom of the beam element obtained from Nelson and McVaugh and that are
usually adopted for many other authors.

(b)

Figure 3 — Beam finite element. (a) degree of freedom adopted by Lee, and (b) degree of freedom adopted by
Nelson and McVaugh.

As it can be noted in Figure 3a, the generalized coordinates g5 and gs (#,(f) = rotations
around the axis Y,) present opposite directions to the axis Y of the global system. The different
conventions result that the matrices of the finite elements used by Lee are different from the
matrices used by Nelson and McVaugh.

Another important fact is the form of the matrix transformation when the rotational degrees
are considered. In previous sections it was shown that the displacement of the rotor can be
written in function of the degrees of freedom in the directions of the axes ¥ and Z. Actually,
the degrees of freedom that are related to the direction Y are the own translational
displacement in this direction as well as the rotation around the axis Z. As illustrated by
Genta'?, for the case of a rigid rotor, but easily extrapolated for the generic case of flexible
rotors, the transformation of the real coordinates y(7), z(), ¢.(t) and ¢,(¢) of the node k into
their corresponding complex coordinates p;(¢) and p;(¢), as well as the forces involved, are:

pi() =y +jz(t) and () =4, ()= jh, ()

QO =f,O+j £ and  gr(0)=fy ()= j fs, () “49)

We can note the negative sign in the term j@,(¢) of po(¢). In the transformation presented by
Lee, this sign doesn't appear because he was included in the definition of the orientation of
the rotation coordinates around the axis y (coordinates ¢ and ¢s). Thus, as we have opted for
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maintaining Nelson and McVaugh's formulation, it was necessary to modify the coordinates
matrix transformation proposed by Lee. Therefore, the transformation of the real degrees of
freedom for complex ones becomes

(7] [0] (1] [0] (7] [0] j{1] [0]
ARURGIONEG OB ROES
T,]=— d [1,7"'=
=2 iy w0y ey | ™ P = 00 o (50)
(0] /171 [0] -7L1] ] (7] [0] i}
Then,
aon (o) | [vor+ iz )
{{pa)}}_ 201|601 1001 510,0) .
B0} ‘{{pl(z)} J‘ Ao [Tloo- oy | )
0) Lo, 0.3+ /10,0

This alteration resulted that all modeling of the rotor could be accomplished independently
of the type of coordinates (real or complex) chosen to analyze the behavior of the rotating
system, as it was the initial objective.

Considering all nodes of the finite element model and the new matrix transformation, we
can rewrite the equation (22a) as

(7,1 [114]['f,,]{{’.’.}}+[Tn]“[D][Tn]{{?}}[Tn]‘1 (KT, ]{{p}} (7,177, n]{{g}} (52a)

i} {pr} P} g}
{ﬁ}} {{ }} {{p}} {{g}}
M, X K, =1
[ ]{{p} R T R T (52b)
where [M,] is composed by complex elements given by
[M,1=T,1' [M][T,]= (53a)
M M M M
tryi0y o for] P M se TVl g, ey 1 0
g = |10 L0150 WM g, MM 21 Wg, 11 o1y 01 1)
" L0TGII0] | IM oy 1IM g ] [M2] (Mo 1 | 2| 5120001120707 | (53b)
(0171 10171} g, ][M¢¢][M¢)z][M¢¢] [0] /21101711
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(MY TIM R ]IMT5] [My]

(M3 1[M35][M33][M5y] {[an] [Mbn]:|
]
]

[ 4
= (M5 ][M5][M55][M5, [Mpn] [M ] (83¢0)
(M1 [M 41 [M i3] [M ]y
where
2M{Y T =My 1+ M 1= (M 2 1= [M oy D 205 1= (M g 1=[M g T+ (M g 1+1M 2. )
2AM 5T =[M 1= (M o2 1+ (M 21+ IM oy 1)s 20M 31 =1M s 1+[M g 1= (M 5 1-[M 2. D
2[M 3 1= My 1=[My 1= j (Mg ]+ [M g D2IM 5, 1= [M g 1+[My g 1+ (M g g 1-[M g 4. 1) (54)

2[ME T =My 1+ M T+ (M g1~ [M g DRIM 1 =[M gy 1-[My g 1= (M g6 1+[M g 5 1)

and remembering that [M},] and [M fn] are the complex conjugate of [My, ] and [M fnls

respectively.
Comparing equations (23) and equation (53¢) we can note that both equations for the mass
matrix have the same structure. The expressions of the elements of [D,] and [K,] and are

found in the same way of [M,;].
In similar manner, the FRF matrix is now written as

[ yy] [Hy¢ ][H z] [Hy¢ ]
[y, ) Hyg 1Ly 11Hyy, ]
[H zy] [Hz¢z] [sz] [H z¢, ]
[

[H" (w)] = (55)
Hy y1Hy g Hy 1[Hy ]
Hence, the dFRF matrix is
T c,n c,n s ryre,n c,n 717
[legl ][legz ] [leél ][HP1§2 ]
[Hc,n ][HC,}’I ] [HC,HA ][HC,HA ] [Hn ][Hn ]
. ) L~ P281 P28&2 7] P28&1 P2827] pPg pg
[HZ]:[T”] I[H”][Tn]: i c,n c,n I c,n c,n ] - Hn Hn (56)
[Hﬁlgl ][Hﬁlgz ] [Hﬁlél ][Hﬁléz ] [ ﬁg][ 13§]
c,n c,n c,n c,n
__[Hﬁzgl ][Hﬁzgz ]__[Hﬁzél ][Hf’2§2 ]_ ]
and the matrices that compose [H P ()] are
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2[H " 1=[H 1 +[H ;1= j((H ), 1-[H )

P81
2 [ch;lljg’z 1= [HJ’¢Z ]_[quﬁy 1+J ([Hy¢y 1+ [HZ¢Z i)
(57)
2[H;’2ng1 ] :[Hyy]_[sz]+j([Hyz]+[HZy])

2[H )" 1=[Hyg 1+[H:p 1= j (Hyg 1M 4. ])

The other matrices ( [H Zé] , [H Zg] and [H Zg"]) are not shown here, but its formulations
are obvious.

6 NUMERICAL RESULTS

For visualization of the FRF and dFRF plots is used a FEM model of a flexible isotropic
rotor as shown in Figure 4. The rotor model has the following dimensions and properties:
shaft lenght: 0.61 m, thickness=0.025 m, shaft radius=0.05 m; discs radius=0.12 m, Young's
modulus =2.1x10"" N/m, Poisson's ratio=0.3, density = 7850 kg/m?, and under rotation of 500
rpm. The element 20, which represent the first bearing, has stiffness X,,=K;,=100 N/m?, and
damping D,,,=D..=10 Ns/m. The element 19, which represent the third bearing, has stiffness
Kyy=Kzz=104 N/m?, and damping D,,=D.,=5 Ns/m. The element 18 has stiffness Kyy=KZZ=10(’
N/m?.

FINITE ELEMENT MODEL
X-Y PLANE
Nodes

7 E) 11 13 15
2 a 6 8 10 12 14 16
1 3 5 7 9 11 13 15]

2 a 6 8 10 12 14
20 18 16 17 19
Elements

Figure 4: Finite Element Model of a Flexible Rotor

The drive-point FRF 15y is shown in Figure 5a. In this plot we can see four modes, but
there is not information about the directivity of them. In the Figure 5b we see the plot of a
normal drive-point dFRF in the point 15 in a range of 20 Hz. In this plot, as the rotor is
isotropic, the backward modes, 4.80 Hz and 11.03 Hz, appear in the negative frequency
region and the forward modes, 5.04 Hz and 14.61 Hz, appear in the positive frequency region.
Therefore, we noted that the dFRF plot has the ability to separate the forward and backward
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modes, while in the FRF plot theses modes are mixed, resulting in more difficulty to the
process of parameter estimation.

Frequency Response Function - Amplitude Directional Frequency Response Function - Amplitude

50 T
[— Hi5y15y

Frequency [Hz]
Figure 5: (a) Drive-Point FRF 15y; (b) Drive-Point dFRF 15.

If anisotropy is permitted in the system, some components of the backward (forward)
modes can appear in the positive (negative) frequency region. The to verify this effect, we
change the stiffnesses in the elements 19 to the values Kyy:1.5><104 Ns/m and K,,=8.0x10°
Ns/m, and in the elements 20 to the values K,,=80 Ns/m. The plot of the drive-point FRF 15y
of this modified system is presented in Figure 6a. In this plot we note 3 significant modes,
5.69 Hz, 11.19 Hz, and 14.84 Hz, and one that almost doesn’t appear in 4.49 Hz. In Figure 6b
we have the plot of the drive-point FRF 15z, which shows that the mode in 5.96 Hz almost
disappear and the mode in 4.49 Hz is increased. Thus, we conclude that the first mode is
essentially in the direction Y, with an orbit almost a straight line, and the second mode is
essentially in the direction Z, with an orbit almost a straight line, too.

The plot of the cross FRF 15215y, in Figure 6¢, shows all the modes in the range of 20 Hz,
but it still doesn’t give information about the directivity of the mode. The Figure 6d shows a
plot of the drive-point dFRF of the point 15. In this plot we see the first mode in 4.49 Hz. The
amplitude of this mode in the plot is a little greater in the negative frequency region, thus
indicating that it is a backward mode and its orbit is almost a straight line (because the
component in the positive region is almost of the same level). But, we can’t say anything
about if the mode is essencially in Y or Z. To do this, it is necessary the information of the
phase of the dFRF, and this will not be deal in this work. With the second mode (in 5.69 Hz),
the analysis is the same, with the difference that, in this case, the mode is forward. But, with
the third mode (in 11.19 Hz), we easily note that it is a backward mode. The amplitude is very
higher in the negative frequency region than the positive one. The appearance of a component
of very low amplitude in the positive region indicate that the orbit is almost a circle. The same
happenn with the fourth mode, but in the opposite direction, i. e., the mode is forward. The
appareance of the four modes is presented in the Figure 7.
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Frequency Response Function - Amplitude

Frequency Response Function - Amplitude
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Figure 6: (a) Drive-Point FRF 15y; (b) Drive-Point FRF 15z. (c) Cross FRF 15z 15y; (d) Drive-

Mode 4
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Mode |
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1190z
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Figure 7:; (c). The Four Mode Shape of the System in the Range of Analysis.
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7 CONCLUDING REMARKS

In this paper the mathematical theory of frequency response function (FRF), used in
traditional modal analysis in rotors, and the directional frequency response function (dFRF)
used in the complex modal analysis are fully described. In addition, numerical
implementation aspects are discussed in order to have both the methodologies in only one
computational program FEM based.

In the analysis of the numerical simulation of isotropic and anisotropic rotors, it was
verified that in the plot of the dFRF, the directivity of the rotating modes could be identified,
and depending on the characteristics of the system, the forward and backward modes can be
completely separated in the two sided dFRF.
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APPENDIX A — EIGENVALUES AND EIGENVECTORS OF A SPECIAL COMPLEX
MATRICES FORM

Let the following eigenvalue problem where the vector {u} is the eigenvector
corresponding to eigenvalue A.

(A2[M]1+ LD+ [KD{u} = {0} (a1

If the matrices [M], [D] and [K] are real (symmetrical or not) it is well known that the
eigenvalues and the eigenvectors appear in complex conjugate pairs. Now, if the matrices are
complex, but in a special form as

( 2 [[Ml][Mz ]} . ;{[Dl]wz ]H[Kl][Kz ]D {{ul}}: {{0}} a2
[M][My] (D2 1[D1]] [[KR[K, 1)) Ltuas) (103
Here, the vector {{u}{uz}}" is the eigenvector associated with the eigenvalue 1. We want

to know what is the eigenvector associated with the complex conjugate of A. Ir order to
answer this question, we can decompose the equation (A.2) as

Z2(M Ty} +[Mo YY)+ 20D g} +1D2 1un b+ (K Ty } +[Ko T }) = {0}

N — - _ i _ 7 (A3)
F2(My Vauy } + M Hug })+ QD 1y} + 1Dy g })+ (K 1aay } +[K Hua ) = {0}

If we transpose the both equations above, we have
22 (M s+ (Mo itg })+ 2Dy ity } + 1D it 1)+ (K 1 s + K 1 ) = {0} A

A2 (Mo 1y + M1 )+ 2Dy 1 s + (D) ity )+ (Ko 1@ + 1K 1 ) = {0}

MM Dy1[D; K 1K i 0
12[[ il 2]}+/{[ il Z]H[ il 21} {{ul}} _ {{ }} )
[M>][My] [Dy1[Dy]] [[K2 K ]])({ua}) ({0}
If we invert the order of the rows in equation (A.5) and changing the order of the columns
of the matrices, as well as the position of the terms of the eigenvector, we obtain

[ I{[Ml][Mz ]} . {[DQ[DZ ]} {[Kl][Kz ]D {{Mz}} _ {{0}} A6
[M;][M,] [DL1[Dy]] [[K QK 1))y ) (0
Therefore we can conclude by inspection that the eigenvector corresponding to the

complex conjugate of the eigenvalue in this problem is not the complex conjugate of the
original vector,, as we can see in equations (A.2) and (A.6).
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