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Abstract. We consider two free boundary problems (one-phase non-classical unidimensional 
Stefan problems) for a non classical source function F depends on the heat flux or the total heat 
flux on the fixed face 0x = . An explicit solution of a similarity type is obtained in both cases 
and the behavior of the first explicit solution is studied with respect to the time t  and a 
dimensionless parameter λ  of the system. 
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1.      INTRODUCTION 

The one-phase Stefan problem for a semi-infinite material is a free boundary problem for the 
classical heat equation which requires the determination of the temperature distribution u  of 
the liquid phase (melting problem) or the solid phase (solidification problem) and the 
evolution of the free boundary ( )x s t= . Phase change problems appear frequently in 
industrial processes and other problems of technological interest (Alexiades and Solomon, 
1983; Crank, 1984; Lunardini, 1991). 
Non-classical heat conduction problem for a semi-infinite material were studied in (Berrone, 
Tarzia and Villa, 2000; Cannon and Yin, 1989; Glashoff and Sprekels, 1982; Kenmochi and 
Primicerio, 1988; Tarzia and Villa, 2000; Villa, 1986). A problem of this type is the following 

( )( )
( ) ( )
( ) ( )

, , 0, 0,

0, , 0,

,0 , 0

t xxu u F W t t x t

u t f t t

u x h x x

⎧ − = − > >
⎪⎪ = >⎨
⎪ = >⎪⎩

                                   (1) 

where ( ), ( )f f t h h x= =  are continuous real functions, and ( ( ), ), 0F F W t t t= >  is a given 
function of two variables. Some particular and interesting cases are the following: 

( )( ) ( ) ( )0
0, , 0F W t t W t

t
λ λ= >                                                   (2) 

and 

( ) ( ) ( )0
03 2

0 0

, , 0
t t

F W d t W d
t
λτ τ τ τ λ

⎛ ⎞
= >⎜ ⎟

⎝ ⎠
∫ ∫                                           (3) 

where in any case ( )W t  represents the heat flux on the boundary 0x = . 
    Non-classical free boundary problems of the Stefan type were recently studied in (Briozzo 
and Tarzia, 2006b, a; Tarzia, 2001) from a theoretical point of view by using an equivalent 
formulation through a system of second kind Volterra integral equations (Friedman, 1959; 
Rubinstein, 1971; Sherman, 1967). A large bibliography on free boundary problems for the 
heat equation was given in (Tarzia, 2000). 
    In this paper, two free boundary problems (one-phase non-classical Stefan problem) which 
consist in determining the temperature ( , )u u x t=  and the free boundary ( )x s t=  such that 
the following conditions are satisfied, i.e. 

( )( ) ( ), , 0 , 0,t xxcu ku F W t t x s t tρ γ− = − < < >    (4) 

 (0, ) 0, 0,u t f t= > >      (5) 

                                 ( ( ), ) 0, 0,u s t t t= >       (6) 

( )( ) ( ), , 0,xku s t t l s t tρ= − >
i

           (7) 

( )0 0,s =       (8) 

where the thermal coefficients , , , , 0k c lρ γ > , and the control function F  depends on the 
evolution of the heat flux at the boundary 0x =  as follow 

2030



( ) ( )0,xW t u t=          and          ( )( ) ( )( ) ( )0, 0, , 0,x xF W t t F u t t u t
t

λ
= = ,  (9) 

or 

( ) ( )
0

0,
t

xW t u dτ τ= ∫      and     ( )( ) ( ) ( )0
3 2

0 0

, 0, , 0, ,
t t

x xF W t t F u d t u d
t
λτ τ τ τ

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∫ ∫  (10) 

with 0 > 0λ . 
    In Section 2 we show an explicit solution of a similarity type for the one-phase Stefan 
problem (4)-(8) for a non classical control function F given by (9). 
    In Section 3 we consider the same one-phase Stefan problem (4)-(8) but now we consider 
that the non classical control function F is given by (10) instead of (9) which takes into 
account the total heat flux on the face 0x = . We also obtain an explicit solution of a 
similarity type for this problem which is related to the explicit solution obtained in Section 2.  
    In Section 4 we study the behavior of the explicit solution given in Section 2 with respect 
to the time t and the dimensionless parameter λ defined by (21). 

2. EXPLICIT SOLUTION TO A ONE-PHASE STEFAN PROBLEM FOR A NON-
CLASSICAL HEAT EQUATION WITH CONTROL FUNCTION OF THE TYPE 

( )( ) ( )00, , 0,  x xF u t t u t
t

λ
=  

The free boundary problem consists in determining the temperature ( ),u u x t=  and the free 

boundary ( )x s t=  with a control function F  which depends on the evolution of the heat flux 
at the extremum 0x =  given by the following conditions. 

                      ( )( ) ( )0, , , 0 , 0,t xx xcu ku F u t t x s t tρ γ− = − < < >   (11) 

       ( )0, 0, 0,u t f t= > >        (12) 

   ( )( ), 0, 0,u s t t t= >         (13) 

( )( ) ( ), , 0,xku s t t l s t tρ= − >
i

       (14) 

( )0 0,s =          (15) 

where the thermal coefficients , , , ,k c lρ γ  are positive and the control function F  is given by 
(9). 
    In order to obtain an explicit solution of a similarity type, we define 

( ) ( ), ,
2

xu x t
a t

η ηΦ = =      (16) 

where 2 ka
cρ

=  is the diffusion coefficient of the phase change material. 

    The problem (11)-(15) and (9) is equivalent to the following one: 

( ) ( ) ( ) 0'' 2 ' 2 ' 0 , 0 ,η η η λ η ηΦ + Φ = Φ < <     (17) 
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( )0 ,fΦ =            (18) 

( )0 0,ηΦ =             (19) 

( )0 0
2' l
c

η ηΦ = −             (20) 

where the dimensionless parameter λ  is defined by 

0 0,
ca
γλλ
ρ

= >       (21) 

and 

( ) 02s t a tη=         (22) 

is the free boundary where 0η  is an unknown parameter to be determined. 
    After some elementary computations, from (17), (18) and (19) we obtain 

( ) ( )
( ) 0

0

,
1 , 0 ,

,
E

f
E

η λ
η η η

η λ
⎡ ⎤

Φ = − < <⎢ ⎥
⎣ ⎦

   (23) 

where 

( ) ( ) ( )1
0

4,
x

E x erf x f r drλλ
π

= + ∫     (24) 

and 

( ) ( ) ( )2 2
1

0

exp exp
x

f x x r dr= − ∫     (25) 

is the Dawson's integral (Abramowitz and Stegun, 1972; Petrova, Tarzia and Turner, 1994). 
Taking into account the condition (20), the unknown parameter ( )0 0 ,  Steη η λ=  must be the 
solution of the following equation 

( ) ( ) ( ) ( )2
1 1

0

4exp 2 , 0
xSte x f x x erf x f z dz xλλ

π π
⎡ ⎤

⎡ ⎤− + = + >⎢ ⎥⎣ ⎦
⎣ ⎦

∫   (26) 

where 0fcSte
l

= >  is the Stefan’s number. 

The Eq. (26) is equivalent to the following one 

1 2( ) 2 ( ), 0W x W x xλ= >      (27) 

where the real functions 1W  and 2W  are defined by 

( ) ( ) ( )2
1 expW x Ste x x erf xπ= − −     (28) 

( ) ( ) ( )2 1 1
0

2
x

W x x f r dr Ste f x= −∫     (29) 
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with ( ) ( )2

0

2 exp
x

erf x z dz
π

= −∫ . 

Remark 1 If 0λ = (i.e. 0 0λ = ) we have the classical Lamé-Clapeyron solution and there 
exists a unique solution 00η of the Eq. (26) given by 

( )0 , 0SteF x x
π

= >      (30) 

where 

( ) ( ) ( )2
0 exp .F x xerf x x=      (31) 

In order to solve the Eq.(27) we obtain previously some preliminary properties. 
 

Lemma 1 The Dawson's integral satisfies the following properties: 

( ) ( )1 1( ) 0 0, ( ) 0,i f ii f= +∞ =  

( ) ( )
1

1 1 1

1

0 0
( ) ' 1 2 0

0

if x x
iii f x x f x if x x

if x x

> < <⎧
⎪= − = = =⎨
⎪< >⎩

 

where 

( )1 1 10.924, 0.541.x f x� �  

( ) ( )( )
2

2
1 1 2

2

0 0
( ) '' 2 1 1 2 0

0

if x x
iv f x f x x if x x

if x x

< < <⎧
⎪⎡ ⎤= − + − = = =⎨⎣ ⎦
⎪> >⎩

 

where 

( )2 1 21.502, 0.428.x f x� �  

( )1( ) lim 2 1
x

v x f x
→+∞

=  

Lemma 2 The functions 1( )W x  and 2 ( )W x  defined by (28) and (29) respectively satisfy the 
following properties 

a) Properties of function 1W : 

( ) ( ) ( )1
1 1( ) 0 , ( ) , ( ) lim ,

x

W x
i W Ste ii W iii

x
π

→+∞
= +∞ = −∞ = −  

( ) ( )1 1 1 00( ) lim ( ) 0, ( ) '( ) 0, 0, ( ) 0,
x

iv W x x v W x x vi Wπ η
→+∞

+ = < ∀ > =  

where 00η  is the unique solution of the Eq. (30). 
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( )
0

1 0

0

0 0
( ) '' 0

0

if x x
vii W x if x x

if x x

> < <⎧
⎪= = =⎨
⎪< >⎩

,     where  
( )0
3 2 ,

4 1
Stex
Ste

+
=

+
 

( ) ( )1( ) '' 0 2 3 2 0.viii W Ste+ = − + <  

b) Properties of function 2W : 

( ) ( )2 2( ) 0 0, ( ) ,i W ii W= +∞ = +∞  

( )4 2 4( ) there exists a unique 0such that 0,iii x W x> =  

( )( )2 1 1
0

( ) '( ) 2 ( ) 2 1 ,
x

iv W x f r dr x f x Ste Ste= + + −∫  

( ) ( )3 2 3 2 3( ) there exists a unique 0such that ' 0and 0,v x W x W x> = <  

( ) ( )2 2( ) ' 0 0, ( ) ' ,vi W Ste vii W+ = − < +∞ = +∞  

( ) ( ) 2
2 1( ) ''( ) 2 1 2 ( ) 2 2 1 ,viii W x Ste x f x Ste Ste x⎡ ⎤= + + + − +⎣ ⎦  

( ) ( )2 2 00( ) '' 0 0, ( ) 0.ix W x W η+ = <  

Lemma 3 For each > 0λ  there exists a unique solution 0η  of the Eq.(27). This solution 

( )0 0η η λ=  satisfies the following properties 

( )
( )

( )

0 00

0 4

0 0

( ) 0 ,

( ) ,

( ) is an increasing function on .

i

ii x

iii

η η

η

η η λ λ

+ =

+∞ =

=

   (32) 

    Then we have proved the following 

Theorem 4 For each 0λ >  the free boundary problem (11)-(15) where F is defined by (9) has 
a unique similarity solution of the type 

( ) ( )
( )( ) ( )

( ) ( )

0
0

0

,
, , 1 , 0

, 2

, 2

E xu x t f
E a t

s t a t

η λ
λ η η λ

η λ λ

λ η λ

⎧ ⎡ ⎤
= − < = <⎪ ⎢ ⎥⎪

⎢ ⎥⎨ ⎣ ⎦
⎪

=⎪⎩

  (33) 

where 

( ) ( ) ( )1
0

4,E erf f r dr
ηλη λ η

π
= + ∫     (34) 

and ( )0 0η η λ=  is the unique solution of the Eq.(27) with ( )00 0 4xη η λ< < . 
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3. EXPLICIT SOLUTION TO A ONE-PHASE STEFAN PROBLEM FOR A NON-
CLASSICAL HEAT EQUATION WITH CONTROL FUNCTION OF THE TYPE 

( ) ( )3 2
0 0

0, , 0,
t t

x xF u d t u d
t
λτ τ τ τ

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∫ ∫  

In this section we shall consider an analogous problem to the free boundary problem studied 
in Section 2 , that is 

( ) ( )
0

0, , , 0 , 0,
t

t xx xcu ku F u d t x s t tρ γ τ τ
⎛ ⎞

− = − < < >⎜ ⎟
⎝ ⎠
∫    (35) 

( )0, 0, 0,u t f t= > >      (36) 

( )( ), 0, 0,u s t t t= >           (37) 

( )( ) ( ), , 0,xku s t t l s t tρ= − >
i

           (38) 

( )0 0,s =               (39) 

where the control function F is defined by (10) which takes into account the total heat flux on 
the face 0x = . 
    In order to obtain the explicit solution corresponding to the problem (35)-(39) and (10) we 
will consider the same kind of transformations used in Section 2. Then, we solve the 
equivalent problem 

( ) ( ) ( )* *
0'' 2 ' 2 ' 0 , 0 ,η η η λ η ηΦ + Φ = Φ < <        (40) 

( )0 ,fΦ =            (41) 

( )*
0 0,ηΦ =                (42) 

( )* *
0 0

2' l
c

η ηΦ = −                (43) 

where the new dimensionless parameter *λ  is defined by * 022 0
ca
γ λλ λ
ρ

= = > , and 

( ) *
02s t a tη= . Therefore, we obtain the following results: 

Theorem 5: For each * 0λ >  the free boundary problem (35)-(39) has a unique similarity 
solution of the type 

( ) ( )
( )( ) ( )

( ) ( )

*
* *

0* *
0

* *
0

,
, , 1 , 0

2,

, 2

E xu x t f
a tE

s t a t

η λ
λ η η λ

η λ λ

λ η λ

⎧ ⎡ ⎤
⎪ ⎢ ⎥= − < = <⎪ ⎢ ⎥⎨ ⎣ ⎦
⎪

=⎪⎩

   (44) 

where )( **
0

*
0 ληη =  is a unique solution of equation 
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( ) ( )*
1 22 , 0W x W x xλ= >  

where the functions ( )1W x  and ( )2W x  are defined by (28) and (29) respectively. 

Corollary 6 For each 0 0λ >  the solution to the problem (35)-(39) for the non classical 
control function (10) is the solution to the problem (11)-(15) for the control function 

( )( ) ( )020, , 0, .x xF u t t u t
t
λ

=  

Reciprocally, the solution to the problem (11)-(15) for the non classical control function given 
by (9) is the solution to the problem (35)-(39) for the control function 

( ) ( )0
3 2

0 0

0, , 0, .
2

t t

x xF u d t u d
t
λτ τ τ τ

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∫ ∫  

Remark 2 Taking into account Lemma 4 (32) (iii) we have 

( ) ( ) ( )*
0 0 02 .η λ η λ η λ= >  

Moreover 

( ) ( ) ( )*, , 2 ,s t s t s tλ λ λ= ≥ . 

4. BEHAVIOR OF THE SOLUTION OF SECTION 2 WITH RESPECT TO THE 
TIME t AND THE DIMENSIONLESS PARAMETER λ 

Now we will prove a result concerning the behavior of the solution of the free boundary 
problem obtained in Section 2 with respect to the time t and the dimensionless parameter λ . 

Theorem 7 The explicit solution (33) of the problem (11)-(15) has the following properties: 

( )
( )( )0

( ) 0, , 0, 0
,x

fi u t t
aE t

λ
η λ λ π

−
= < ∀ >  

( ) ( ) ( )
( ) ( )

0 0

0

, , , , 0 , 0
(ii)

, , 0

u x t u x t x s t t

s t s t t

λ

λ

≥ ∀ ≤ ≤ >⎧⎪
⎨

= ∀ >⎪⎩
 

where 

( ) ( )
( )

( ) ( )

0 00
00

0 0 00

, 1 , 0 , 0
2

,0 2

erf xu x t f t
erf a t

s t s t a t

η
η η

η

η

⎧ ⎡ ⎤
= − < = < >⎪ ⎢ ⎥⎪

⎨ ⎣ ⎦
⎪

= =⎪⎩
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( )
( ) ( )

( )( )
( )( ) ( )( ) ( )0 1

2
0 0 1 0

00

1 2, , 1 2( ) 1 1 ,
,, exp 21

fu x t
iii x t

x tu x t Ste f

η λ λλ
η

η η λ λ η λ
η

∞
⎡ ⎤+
⎢ ⎥≤ ≤ −

− +⎢ ⎥⎣ ⎦−
 

( )
( ) ( ))0

0

, ,
( ) lim 1   uniformly  compacts sets 0,

,t

u x t
iv x s t

u x t
λ

→+∞
= ∀ ∈ ⊂ ⎡⎣  

Proof. (i)We have 

( ) ( )( ) ( )
0

1 E 1, , = ,
, 2xu x t f

E a t
λ η λ

ηη λ λ
− ∂

∂
 

( )( ) ( ) ( ) ( )
( )( ) ( )

2
2

1
0 0

exp
exp 2 1 2

, ,

ff f F
a tE a tE

η
η λ η λ η

π η λ λ π η λ λ

− −− ⎡ ⎤= − + = +⎡ ⎤⎣ ⎦⎣ ⎦  

then we get 

( )
( )( )0

0, , 0.
,x

fu t
a tE

λ
π η λ λ

−
= <  

In particular if 0 0λ =  then we get 0λ =  and 

( ) ( )
( )0 00

00

, 1 , 0 , 0
2

erf xu x t f t
erf a t

η
η η

η

⎧ ⎡ ⎤⎪ = − < = < >⎨ ⎢ ⎥
⎪ ⎣ ⎦⎩

 

which is the Lamé-Clapeyron classical solution (see Remark 1). 
To prove (ii) we apply the maximum principle. Let ( ) ( ) ( )0, , , , ,v x t u x t u x tλ= −  

( )00 , 0,x s t t≤ ≤ >  which satisfies 

( )( ) ( ) ( )( ) ( )( )0
0 0

0

1 0, 0, 0, , , , 0.
,t xx

fcv kv v t v s t t u s t t
Ea t

γλρ λ
η λ λπ

− = > = = >  

Then we get ( , ) 0v x t ≥  and (ii) holds. 
To prove (iii) we take into account the following properties: 

( ) ( ) ( )( )1 1 1 1 10

2( ) , ( ) ,a erf b f r dr f f f x
η

η η η
π ∞ ∞

< ≤ =∫  

( )
( ) ( )

( )
00

00 00

0000

1 1( )
11

erf
c

erferf
erf

η ηη η ηηη η
ηη

< ⇒ ≤ ⇒ ≤
−−

 

(d) ( )0η λ  satisfies the relation 

( )( ) ( )( ) ( )( ) ( )( )
( )

0

2
0 1 0

0 10
0

exp 24 .
fSteerf f r dr

η λ η λ λ η λλη λ
η λπ π

− +
+ =∫  

Then we get 
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( )
( )

( )( )
( )( )
( )
( )

( )
( )

( )( ) ( )( )
( )( )

0 0

0 0

00 00

,
1

, , ,, , 11
, ,1 1

E
E E Eu x t

erf erfu x t E
erf erf

η λ λ
η λ λ η λ λ η λ λλ

η η η λ λ
η η

−
−

≤ = =
− −

 

( )
( )

( )
( ) ( )

( ) ( )( )
10

0 2
0 1 0

00

4
1 1

exp 21

erf f r dr

erf Ste f
erf

ηλη
π πη λ

η η λ η λ
η

⎡ ⎤+⎢ ⎥
= −⎢ ⎥

− +⎢ ⎥− ⎢ ⎥⎣ ⎦

∫
 

( )
( )( )
( )( ) ( )( ) ( )0 1

2
0 1 0

00

1 21 21 ,
, exp 21

f
x t

x t Ste f

η λ λ
η

η η λ λ η λ
η

∞
⎡ ⎤+
⎢ ⎥≤ −

− +⎢ ⎥⎣ ⎦−
 

(iv) If we let t +→ ∞ , we obtain that 

( ), 0
2

xx t
a t

η += →  uniformly x∀ ∈compact sets ( ))00, s t⊂ ⎡⎣  and 

( )
( )( )
( )( ) ( )( ) ( )0 1

2
0 1 0

00

1 21 21, 1 , 1
, exp 21

f
x t

x t Ste f

η λ λ
η

η η λ λ η λ
η

∞
+

→ − →
− +−

 

then we obtain 

( )
( ) ( ))0

0

, ,
lim 1   uniformly  compacts sets 0, .

,t

u x t
x s t

u x t
λ

→+∞
= ∀ ∈ ⊂ ⎡⎣  
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