
A TENSOR LIBRARY FOR SCIENTIFIC COMPUTING

A.C. Limachea and P.S. Rojas Fredinib

aInternational Center of Computational Methods in Engineering (CIMEC) INTEC-CONICET.
Santa Fe, Argentina. http://www.cimec.com.ar/alimache

bDepartment of Informatics, FICH, National University of the Litoral (UNL). Santa Fe, Argentina.

Keywords: LTensor, scientific computing, tensor library, C++ library, indicial notation.

Abstract. The majority of physical phenomena and their computational simulations are described
mathematically in terms of tensors and their different algebraic operations. Possibly the most used
tensors are the ones of rank 1 and 2, which correspond to the algebraic concepts of vectors and
matrices, respectively. Nevertheless, higher rank tensors (specially 3 and 4) appear at all times in
different branches of physics and in numerical methods. One of the major drawbacks of high
performance computing is that the code necessary to perform such tensor operations looks different
and it is several lines longer than the corresponding one-line mathematical representation. Here we
present a C++ tensor library, called LTensor, that we have developed using modern concepts of
object oriented design and expression templates. As it will be shown, the LTensor library is able to
mimic the classical indicial notation and follows Einstein convention about indices. Furthermore, it
has other additional features than distinguish it from other libraries based on similar concepts:
dynamic dimension size, arbitrary contraction order, customizable storage, inherited class structure,
arbitrary looping positions on indicial notations, etc.

Mecánica Computacional Vol XXVII, págs. 2907-2925 (artículo completo)
Alberto Cardona, Mario Storti, Carlos Zuppa. (Eds.)

San Luis, Argentina, 10-13 Noviembre 2008

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.cimec.com.ar/alimache

1 INTRODUCTION

The C++ programming language has interesting features that make it an excellent choice
for scientific and engineering applications. One of these known features is operator
overloading. Operator overloading makes it possible to write algebraic expressions
containing vectors or matrices in a similar way one would write them in a piece of paper.
For example given a matrix (Tensor2) A and three vectors (Tensor1) b, c, d one can perform
the following algebraic operation:

c = A*b+d; (1)

once one declares them as:

Tensor2 A;
 Tensor1 b,c,d;

But this level of abstraction comes at a high cost, since tensors are usually implemented
using temporary objects (Veldhuizen, 1995). The code generated by expression (1) is
equivalent to:

Tensor1 t1 = A*b;
Tensor1 t2 = t1+d;
c = t2;

Each of the above expressions uses a loop to evaluate the operation, so the compiler
generates three sequential loops to accomplish the original expression. This represents a big
overhead compared to the classic C-programming style where the desired operation can be
accomplished with the following code:

double **A;
double *b,*c,*d;

// here goes allocation and initialization

for (int i=0;i<dim;i++)
{

for(int j=0;j<dim;j++)
{

c[i]+= A[i][j] * b[j];
}

 c[i]+= d[i];
}

Using the C-programming style only two loops are needed, which results in a shorter
evaluation time. We also have another benefit: the temporaries are not necessary. However,
in the C-style approach the syntax is far more complex and less intuitive than the operation
overloading alternative defined in eq. (1). Also if we need to do a minor change in the
operation, for example, if instead of an inner contraction we want to compute an outer
contraction, we need to modify the routine completely. This is specially annoying when
working with arbitrary tensor contractions. The situation gets worst when dealing with
higher order tensors, where nested loops make the code error prone and harder to follow.

A.C. LIMACHE, P.S. ROJAS2908

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Because of these reasons some people usually prefer interpreted languages like Matlab,
Octave, Python, etc., which offer a clear syntax and are easier to use, but their performance
is by far not comparable to native C or FORTRAN performance.

The above described panorama has changed drastically in favor of C++ with the work by
Veldhuizen and his colleagues (Veldhuizen, 1995a; Veldhuizen and Jernigan, 1997) who
developed a technique known as template expressions. They described how to use an
unintended template feature to evaluate expressions in a single pass by building trees of
expression objects. This opened a new world of possibilities, and motivated the development
of new libraries which exploded this technique (Veldhuizen, 1998; Landry, 2002; Ahlander ;
Jeremic , B. , Sture, S , 1998; Ilyin, V. , Kryukov, A , 1996; Blinn, 2000). Along with this
technique emerged another one called template metaprogramming (Veldhuizen, 1995b;
Veldhuizen, 1999) , which allowed the generation of code at compile time with some
restrictions.

FTensor (Landry, 2002) and Blitz (Veldhuizen, 1998) have had the biggest influence at
the time of developing the present library. FTensor is highly focused on performance, at the
cost of some sacrifices regarding flexibility, like the impossibility to change the size of a
particular dimension of an array at runtime. It incorporates indicial notation with Einstein
convention to C++ syntax in a natural way, making possible to write expressions like the
one defined in Eq. (1) as:

Tensor2 A;
Tensor1 c,b;
c(i)=A(i,j)*b(j)+d(i); (2)

This not only offers an improved legibility but also is efficient, evaluating the expression on
a single loop, with no temporaries.

On the other hand Blitz library offers much more flexibility but the syntax for Einstein
notation is not as clear as the previous one in the case of contractions.

Taking these ideas, a library was developed named LTensor, featuring multi-indexed
arrays up to rank 4, Einstein notation with a natural syntax, dynamic dimension size, and an
inheritance structure offering a good balance between flexibility, performance and legibility.

2 DESIGN OVERVIEW

The library was designed with flexibility in mind. An inherited class structure was
chosen like in Fig. 1. The main class is Marray which inherits from Base the main
functionality. The other important class is TExpr; this is the one that allows the
implementation of the index notation as it will be shown later.

+tensorOperations()
+commonOperations()

Marray<class type,int rank,class base>

+baseAlgorithms()

-data : Store

Base<class type,int rank>

Figure 1: Inheritance design

Mecánica Computacional Vol XXVII, págs. 2907-2925 (2008) 2909

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

2.1 Base class

Base is the base class templatized with rank and type. It is responsible of offering the
basic functionality for an array of rank=1, 2, etc. and of type=int, double, complex, etc. It
manages the memory where the data will be stored, it is in charge of allocation an de-
allocation of memory and basic operations on the data. The member data in Fig.1 is only a
guideline, depending on the base class implementation it can have a total different shape,
although there is an interface that must be met in order to provide all the methods needed by
the Marray class.

This way, is possible to have different behaviors and optimizations regarding the natural
structure of the data for the problem at hand.

2.2 Marray class

This is probably the most important class from the perspective of the programmer. This
class is specialized on the template parameter rank, allowing different implementations
depending on the tensor rank. This could look like a design fault, but saves many runtime
instructions that otherwise would be needed on each method to determine the rank of the
tensor at hand.

The first template parameter indicates the type of the data that will be stored in the array.
The third parameter defines which will be the class to inherit from. Although there are
different specializations of this class, it should be noted that the Base is the same on all of
them. So Base must provide functionality for all ranks.

The class Marray implements all the required methods to support indexed expressions,
generic functionality and numeric algorithms referred as commonOperations() in Fig. 1.
No data is actually stored on this class; it acts as a wrapper adding the functions described
earlier.

Because of this design pattern, it is possible to have different types of tensors like sparse,
symmetric, etc. But it is not limited to different tensor types; it is possible to have arbitrary
memory ordering, for example, FORTRAN-style arrays.

The equals and index operators of Marray call the Base equals and index operator
respectively, as shown in Fig. 2 for the case of the index operator. Marray class doesn’t
know where the data comes from, nor if it is preprocessed or altered in some way. This is
what gives freedom of implementation to the Base class. A simple change of the Base class
results in a tensor with the characteristics defined by the base and the functionality –
including the index expressions- of the Marray class.

Base<type,rank>Marray<type,rank,base>mainApp

operator()

type value

operator()

type value

Figure 2: Sequence of operator relying

A.C. LIMACHE, P.S. ROJAS2910

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

2.3 Tensor Expressions

One of the main features of the present library is the possibility to write complex
operations using the Einstein summation convention in a natural way. For this task two new
classes were needed to act as index entities: IndexF and IndexG, as shown in Fig. 3.

IndexG is the simplest class. It is a container of a char character which plays the role of
the index identifier. When these indices are used the compiler knows that loops have to
performed over all the dimension of the indicated tensor component. The IndexF class has
an additional member named indexes which is used to specify the positions the index will
loop over.

The main class involved in the tensor expressions is TExpr, which is a container for
objects of type determined by its own template parameter. This way TExpr holds pointer to
objects, whose only restriction is to have the operator() defined.

IndexG<char i>

+indexOperations()()

-indexes : Marray<class type ,int rank,class base>

IndexF<char i>

Figure 3: Index classes

Generically speaking there are two classes of objects a TExpr can hold:

1. Unary Objects
2. Binary Objects

The first one is an object that holds a pointer to a Marray or to another TExpr object,
but only one. The Unary object can apply modifications to the object it holds, like making it
negative or scaling by a constant for example.

The second is an object that holds two pointers instead of one, to another TExpr, or
Marray. This object performs binary operations between them.

Both of them have the operator () defined, allowing the creation of trees of TExpr as
shown in Fig. 4.

There are objects TExpr for the different ranks supported by the library, named TExprN
with N=1..4. Those objects have operations defined between them by operator overloading,
and between them and the Marray class. Those operators are the ones in charge of doing the
loop and assignation along the TExpr dimensions, because in the end the TExpr represents
a complex expression that can be indexed. The calling sequence is shown in Fig. 5 for a
simple case. It can be seen how the indexing operator is spread up the tree and every object
applies the operation it represents. For example in Fig. 5, the BinaryObject could be an add
operator, adding the two Expr2 and returning the result. This way, in a single for loop is
possible to evaluate the whole expression.

The Binary and Unary Objects fall in different categories depending on the task they
perform:

1. Encapsulation Object: this object works as an encapsulation for Marray objects. It
makes possible to encapsulate Marray objects of different dimensions than the TExpr
container. It is useful in the cases where constant indexes appear on expressions,
lowering the number of free indexes. This class also provides the mechanisms for the

Mecánica Computacional Vol XXVII, págs. 2907-2925 (2008) 2911

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

two kinds of indexes described earlier to work, keeping a reference to the indexes in
the case of an IndexF, and returning the correct value of the contained expression
according to them.

2. Binary Operators: the objects falling under this category perform binary operations
on the two contained TExprs, and return another TExpr with the result of the op. One
of the most relevant is the Contraction object that given two TExpr with their
associated indexes returns the results of the contraction.

3. Unary Operators: the most common operations involving objects from this category
include Marray sign inversion and operations involving scalars.

Marray2

TExpr2

BinaryObject

UnaryObject

TExpr2 TExpr2

Marray 2

UnaryObject

TExpr2

Marray2

UnaryObject

TExpr2

BinaryObject

Figure 4: Simplified tree expression representation

A.C. LIMACHE, P.S. ROJAS2912

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

TExpr2 TExpr2BinaryObject TExpr2

Operator(n1,n2)

Operator(n1,n2)

Operator(n1,n2)

Type data

Type data

Type data

Figure 5: Expression calling sequence

2.4 Equal operator overloading

This is the key for the described hierarchy to work. The responsible of performing the
evaluation of the Texpr is the operator equal (operator=) of the Marray class and the
operators equal of the TExpr classes. Each one of them performs a loop along the indexes of
the Texprs evaluating the whole tree on each iteration, and assigning the returned value to
the left side of the assignation, that of course can be another TExpr tree.

3 IMPLEMENTATION

Currently two base classes are implemented to act as the Base object, TinyArrayBase
and ArrayBase, each one of them designed for different usage scenarios.

The Marray classes provide implementations of common numeric algorithms, but of
course, lack of possible optimizations according to the type of the Base. In the cases where
those algorithms could perform better due to a characteristic of the Base the implementations
should be provided by it.

As it is well known, there is always a balance between flexibility and performance. In
developing the current library some performance penalties were accepted in exchange for a
clearer code. This allows the occasional reader to understand faster what the algorithm is
performing, instead of going though thousands of cryptic instructions. The programmer is
relieved from the burden of implementing complex index contractions and other operations
that can be accomplished in a human friendly way by this library.

3.1 TinyArrayBase class

This is a simple class with minimum functionality in favor of speed. It is intended to be
used when the size of the Marrays is small, and should be used by default if no other base is
provided. It’s highly optimized for speed and has a very little overhead on the functions
called by the Marray class. It always works with C-style arrays, not being possible to
change this.

The internal storage of the data is a normal C-array with a mapping corresponding to the
rank. A copy is always made when the operator= is called, with no possibilities of working
with references. In this way each TinyArrayBase is the owner of its memory.

Mecánica Computacional Vol XXVII, págs. 2907-2925 (2008) 2913

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

This class provides the different operator() overloads in order to work with any of the
possible Marray ranks.

3.2 ArrayBase class

This class was designed with functionality in mind. It offers a lot of features, and
possibilities in exchange for a bigger penalty in performance than the case of the
TinyArrayBase. This class is intended to be used when the dimensions of the Marray are
big. Some of the most relevant features are:

1. Arbitrary dimensions ordering: the ordering of the dimensions of this class can be
provided by the user. It allows working with C-style arrays (default), FORTRAN-
style arrays, or any ordering provided by the user. This ordering is used to store the
data in memory. This permits implementing FORTRAN algorithms, directly without
worries about the penalty for the dimensions ordering. Or using a custom storage order
according to the problem at hand. The memory is effectively ordered by this
parameter, to benefit from less cache misses, less memory reads, etc.

2. View/Storage model: None of these classes is the owner of its storage. Each instance
has a pointer to a StorageClass that can be customized to fit different needs.
GeneralStore is the common storage provided for this class. Each time an ArrayBase
is instanced it creates a new GeneralStore and keeps a pointer to it. Each ArrayBase
acts like a view of the storage, it does not own it. The store manages the memory,
allocation, deallocation, ordering, etc. And the ArrayBase behaves like a filter: it
allows seeing the store completely, with a determined stride, etc.

3. Copy behaviour: As said before, this class does not own its storage, so each time the
equal operator is used, the view properties are copied, not the data itself. The storage
remains unique, and is shared amongst all the ArrayBase -views- pointed to him. So
modifying one, modifies all of them, because they share the data. This applies when
working with the same data Type. When assigning ArrayBase of different Type, a
new storage is created, and the data casted to this new Type.

4. Storage Lifetime: The storage works with a reference counting scheme in a very
similar way to smart pointers. When the reference count falls to zero it de-allocates
the memory.

As shown above, this class is very useful, when working with big Marrays, because no
memory copies are made, and with the views is possible to work with parts of the big
Marray, as if they were smaller Marrays.

3.3 Performance penalties

As stated before some performance penalties were admitted in pos of a better code
legibility and programming flexibility for the intended user. The presence of the inherited
hierarchy is the first thing to take into account; to minimize the impact of it, extensive
inlining was used in the most performance critic methods. An example of this is the
operator() which is the principal actor on the performance play. A lot of methods use the
const signature also to counter this problem.

Another major performance hit resides in the dynamic dimensions. This makes
impossible to use template metaprograms on all the loops along the dimensions for some
kind of operations.

However, we must emphasize that the performance penalties can be considered a cheap
trade-off if one consider the easy of use of the resulting programming syntax: the Ltensor
user can write tensor operations in a simple, intuitive, concise form, as natural as writing
tensor formulas by hand.

A.C. LIMACHE, P.S. ROJAS2914

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

3.4 Performance optimizations

On the other hand, some performance optimizations were made. As shown before, an
extensive use of expression templates is made. This traduces in single loop evaluations for
complex expressions.

The use of restricted pointers also provided a big performance boost. Special care was
taken when using that kind of pointers.

Although the dimensions of the Marrays are fixed, the rank is not. So some meta
programming was used along the rank loops, to unroll them.

Perhaps the most used technique in this library is specialization. Almost every
templatized class has specializatons. This is due to two reasons. First, a lot of processing
time is saved if some decisions are made at compile time. For example, providing one
specialization for each rank of a Marray, saves the need of checking at running time the
rank of the tensor, and allows the use of metaprogramming on each specialization. Second,
and probably more important, is the fact that in order to have all their features the
expressions objects rely heavily on specialization. For example, if we have a contraction of
two indexes, the compiler searchs along all the specializations of the overloaded method
operator* and instantiates only the one that matches, so at runtime there is no need to check
which indexes contracts or which indices are free, avoiding a run-time logic of index
contraction. Of course this means implementing all the possible specializations of
encapsulations, contractions, index permutations, etc. This required an extense programming
work but this work, once done, allows handling all the universe of possible contractions and
algebraic operations.

An example is given. If we consider the standard matrix vector product (in indicial
notation):

 c i=A ij∗b j

with the LTensor library we can compute it by writing it in an identical format:

IndexG <’i’> i;
IndexG <’j’> j;

c(i)=A(i,j)*b(j); (3)

The expression on the right side of eq. (3) will generate a contraction BinaryObject
containing pointers to A and b. This is not enough to define the contractions, so another
parameter should define the contraction itself. This is achieved with the IndexG objects.
Those objects provide the template chars that permit the specialization of the contraction
object. In this case the compiler will instantiate the method operator*() that contracts along
index j.

3.5 Algorithms

The library includes some of the most common algorithms used in numeric calculus.
Most of them belong to rank 1 and 2 of Marray Objects. The most relevant are:

1. Norm zero
2. Norm infinite
3. Norm N
4. Quicksort
5. Inverse
6. Gaussian elimination
7. LU factorization

Mecánica Computacional Vol XXVII, págs. 2907-2925 (2008) 2915

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

8. Linear System Solver
9. Cholesky factorization
10. Determinant

3.6 STL compatibility

The library is fully compatible with the STL iterators. This allows the use of STL
algorithms on the Marray classes. The only thing to be taken into account is the order the
iterator uses to visit all the positions. The ordering is fixed, and correspond to a C-style
array. Meaning the Marrays are iterated in a row-wise manner. Providing the iterators is
responsibility of the base classes, giving them the possibility to perform optimizations
depending on the structure each one has.

3.7 Tensor Expressions

The tensor expressions support only lower indexes, and are fully compliant with the
Einsten summation convention. They support also the presence of scalars in the expressions.

The expressions support arbitrary contractions of any form up to rank 4. These
contractions can be done along all the elements of a given dimension, using IndexG indices,
or can be done along specific indexes of a container, using IndexF indices. In both cases the
validation of the expressions is done in an implicit way by specialization. This makes it easy
to find wrong formulas, and typing errors. The validation does not only check the dummy
indexes but also validates the free indexes with the right side term, resulting in a full
expression validation at compile time.

To accomplish the features described above it was necessary to implement one by one all
the possible contractions and permutations for the expressions up to rank 4. Although it was
a tedious task, it was a one-time job, and permits the strict validation described above with
no overheads at runtime.

3.8 Serialization

The library provides mechanisms to serialize and de-serialize from disk. This allows
loading Marrays from space separated files, making it easier to share data amongst previous
applications. This also allows exporting data for post processing or visualization.

4 SYNTAX AND COMMON OPERATIONS

In this section a brief overview of the library syntax and features will be given.

4.1Arrays operations

Marray <type,rank,base=default> a;

This is the default syntax when creating an Marray Object. The first and second parameters
are obligatory indicating the type of the data and the rank of the Marray. The third parameter
is optional, taking the class TinyArrayBase as default. Then, with the following type-
definition:

typedef Marray<double,1> DTensor1;
typedef Marray<double,2> Dtensor2;
typedef Marray<double,3> DTensor3;

we can define sets of tensor objects of rank 1, rank 2 (i.e. vectors and matrices) or rank 3.

A.C. LIMACHE, P.S. ROJAS2916

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

For example,

DTensor1 a(6), b(6), c(4), d(4);
DTensor2 A(4,6), B(4,6); (4)
DTensor3 E(3,3,3);

Below are shown additional examples of some common supported operations:

a=b;
a(0)=10.0;
A(2,3)=1.0;
A+=B;

Note that the Marray constructor receives the tensor dimensions as the first parameters, and
these parameters can be (optionally) followed by a default initialization value.

4.2 Iterators

DTensor1::iterator it;
it=a.begin();
while(it!=a.end()){

//some operations
it++

}

The LTensor iterators are STL compatible, and provide an easy way to loop through all the
elements of an Marray in a linear way. The implementations of each iterators is provided by
the base class, to exploit the natural characteristic of the data. For example a sparse base,
won’t be iterated in the same way as a dense ones would.

4.3 Tensor Expression

As said before two classes of indexes can be used as indexes of tensor expressions. The
first one, named IndexG is a simple class with only one template parameter: a char, which
uniquely identifies an index in a tensor expression. For example three different IndexG
objects can be declared as:

IndexG <’i’> iG;
IndexG <’j’> jG; (5)
IndexG <’k’> kG;

It must be noticed that despite the name given to the index object, the char determines which
index it represents. The IndexG class uses the templatized char similarly as it is used in the
Index class of the FTensor library however one major difference is that the IndexG class
does not require any additional “dimensional” parameter as the Ftensor's class does. Note
that in eq. (5) we have named the index objects ending with a “G” so as to clearly identify
the type of index. IndexG objects mean that the whole dimension they index will be used in
the expression. For example, with the LTensor library and the declarations given in Eqs. (4)
and (5), we can compute simultaneously a matrix vector product and a vector addition:
 c i=A ij∗b jd i (6)
in the same natural way:

Mecánica Computacional Vol XXVII, págs. 2907-2925 (2008) 2917

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

 c(iG)=A(iG,jG)*b(jG)+d(iG); (7)

 The compiler and the library will do the job for us and perform automatically the inner
product, looping the jG index along the tensor dimension of b and the second tensor
dimension of A, and looping the iG index along the dimension of vector c.

Note, that if we use a wrong index to perform the product, as in:

 c(iG)=A(iG,jG)*b(kG)+d(iG);

the compiler will throw us an error letting us know of our mistake.

We have created another index class, named IndexF, to have an additional flexibility
which is to have the capacity to loop over a specified set of indices along a tensor
dimension. In other words, on the contrary to IndexG objects, with IndexF objects we can
loop not only along the entire index dimension but along any subset of index values, which
can be given or changed at runtime. IndexF objects can be declared as follows:

IndexF <’i’> iF(init,end,stride);
IndexF <’j’> jF(Marray);
IndexF <’k’> kF(size);

The declaration of IndexF objects is a bit more complex than the one of IndexGs, because
besides the char representing the index, we can set an integer array representing the
container positions this index will use when participating in an expression.

As an example of their use, note that if we define two indexF objects:

IndexF <’i’> iF(4);
IndexF <’j’> jF(0,6,2);

and the expression:

c(iF)=A(iF,jF)*b(jF);

we will be able to perform a reduced matrix vector product, where the inner product,
contracting along the jF index loops only along the even positions of the second dimensions
of A, and the even positions of b. On the other hand, since the index iF has been set a
dimension of 4, it will still loop along the whole dimension of c.

As seen above the IndexF iF, acts as an IndexG looping through the whole dimension,
this produces a little overhead because iF needs to hold an array indicating those positions.
Ideally we would like to not to have to define this redundant index. To fix this, we improved
further the features of the library in order to allow the presence of both type of indexes
(IndexF and IndexG) in the same Expression. So now it is possible to write:

c(iG)=A(iG,jF)*b(jF);

and no overhead is present, because as said before IndexG acts only as a container for the
template parameter.

The use of IndexF indexes introduces some performance penalties, but allows performing
some operations that couldn’t be achieved without having to write long portions of code
every time the need arises. A practical example of the utility of IndexFs is when performing
assembly operations in computational mechanics codes (Limache, A. and Idelsohn, S. 2007;

A.C. LIMACHE, P.S. ROJAS2918

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Limache A. 2008). Using these indexes, portions of elemental matrices can be easily inserted
into global matrices. Or one can work directly over the global matrix, but with the indexes
looping on the elemental matrix contained.

5 PERFORMANCE TESTS

Tests were made comparing the performance of the present library versus the hand coded
version of the same algorithm. The base used for the tests is TinyArrayBase because is the
one oriented to performance. All the times are measured in seconds.

The following contraction is used for the tests

 a(iG)=b(iG,jG)*c(jG)+d(iG); (7a)

This test was run changing the size of the Arrays involved. Table I shows the results of
the current test. The relative performance (hand coded time/LTensor time) is above 1 for all
the tests. This means the LTensor implementation performs better than the hand coded
version shown in Appendix 9.1. This improvement is mainly due to the use of restricted
pointers, that speed up array indexing. The oscillation in the graph correspond to memory
management issues. For very small Marrays the improvement is more noticeable because the
overhead of the indexing operator doesn’t have a big impact, this changes as the size
increases. But the performance superiority remains along all the tests. The behavior can be
seen in Fig. 6 where it is shown that for big Marrays the performance tends to stabilize. On
average the relative performance of the LTensor computation is 2,50 times better than the
naive C-coded version.

Size Ltensor Hand Coded Performance
3 1,67E-06 2,09E-06 1,25
10 1,95E-06 4,19E-06 2,15
50 7,61E-06 3,40E-05 4,47
100 2,49E-05 9,01E-05 3,62
500 1,30E-03 2,00E-03 1,54
1000 4,40E-03 8,40E-03 1,91
3000 3,30E-02 7,00E-02 2,12
5000 6,00E-02 1,80E-01 3,00

Table 1: Relative Performance Table vs Hand Coded

 The tensor expression (7a) was also tested against a naive tensor implementation based on
standard C++ operator overloading, this naive implementation is included in the Appendix
9.2. The results are shown in Fig. 7. From the figure it can be seen that the LTensor
approach performs better than the C++ overloading approach (despite the overhead of the
indexing operators, and the inherited hierarchy). One of the biggest performance penalties of
the standard C++ overloading approach is caused by the copy of temporals. Each binary
operators generate temporals, that are copied and returned. This results in big memory
operations due to data copy, cache misses and pagination algorithms. The LTensor approach
does not generate temporals, so the memory management problem does not appear in the
operation. The performance results are summarized in Table 2.

 Again a relative performance factor (overloading time/LTensor time) was calculated and is
shown in Fig. 8. There, the benefits of using the LTensor library can be clearly seen,
specially for big size Marrays. It must be also said that the classical overloading approach
does not allow arbitrary contractions, so we can only define very specific contractions and

Mecánica Computacional Vol XXVII, págs. 2907-2925 (2008) 2919

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

can not go farther than implementing the inner matrix-vector product. Another tests were run
to compare the operator= for both kinds of Marray Bases. As shown in Fig. 9 the operator
equals (operator=) for TinyArrayBase takes more time than the ArrayBase one. The data is
shown in Table III. As explained earlier, this is due to the fact that the TinyArrayBase class
works by copying the data between objects and the ArrayBase class works as a view of the
storage.

0,00

1,00

2,00

3,00

4,00

5,00

0 1000 2000 3000 4000 5000

Size

P
er

fo
rm

an
ce

Figure 6: Relative performance vs hand coded

Operator
overloading Relative performance

4,67E-06 2,80
9,70E-06 4,97
5,15E-05 6,77
1,38E-04 5,55
2,08E-03 1,60
9,29E-03 2,11
8,20E-01 24,85
4,99E+00 83,17

Table 2: Classic operation overloading apporach

-1,00E+00

0,00E+00

1,00E+00

2,00E+00

3,00E+00

4,00E+00

5,00E+00

6,00E+00

0 1000 2000 3000 4000 5000 6000

Size

T
im

e

Ltensor
Operator Overloading

Figure 7: LTensor– Operator overloading comparison

A.C. LIMACHE, P.S. ROJAS2920

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

0,00
10,00
20,00

30,00
40,00

50,00
60,00

70,00
80,00

90,00

0 1000 2000 3000 4000 5000 6000

Size

P
er

fo
rm

an
ce

Figure 8: Relative performance of classic C++ overloading

0

0,05

0,1

0,15

0,2

0,25

0 1000 2000 3000 4000 5000 6000
Size

Ti
m

e

ArrayBase TinyArrayBase

Figure 9: Operator equals (operator=) comparison

Size ArrayBase (s) TinyArrayBase (s)
1000 0,009457 0,01218
3000 0,0081 0,089
5000 0,024 0,21

Table 3: Operator equals (operator=) test

6 EXAMPLES

6.1 MulPhys

The LTensor library has been successfully employed in an advanced computational
mechanics code named MulPhys (Limache A. 2008). As we know the Finite Element
Method (FEM) requires the computation of tetrahedron volumes as part of the numerical
requirements, mathematically the volume of a tetrahedron with sides a, b and c, is given by:

Mecánica Computacional Vol XXVII, págs. 2907-2925 (2008) 2921

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

0.6

)(cba
vol

⋅×= (8)

where x denotes de cross vector product. Using indicial notation and the Levi-Civita tensor
E, we can write the above expression as:

0.6/)(ikjijk cbaEvol = (9)

well, using the LTensor we can compute the volume exactly in the same concise way:

vol = (E(iG,jG,kG)*a(jG)*b(kG)*c(iG))/6.0;

it works, it is simple and extremely efficient.

6.2 Linear Elasticity

Linear elasticity is used extensively in structural analysis and engineering design. Its
constitutive equation is

klijklij C εσ = (10)

where ijσ is the Cauchy stress tensor, ijklC is the elasticity tensor and klε the strain tensor.
Using the LTensor library we can compute Eq. (10) as:

Sigma(iG,jG)=C(iG,jG,kG,lG)*E(kG,lG);

The above implementation is simple, clear and doesn’t require temporal variables or
initializations like the C-style coding of the same equation.

6.3 Arbitrary Contractions

The library is suitable for a lot of computational scenarios where arbitrary contractions
are needed in order to perform specific operations. For example :

A(iG,jG,kG,lG)=B(iG,mG)*C(mG,jG)*D(kG,lG) + E(iG,jG,kG,lG)/2.0;

permits the manipulation of high order tensors with ease, even if those arise as a result of
lower order tensor operations.

6.4 Matrix Assembly Operations

Given iF and jF, the indexes of a global tensor A where the assembly must be done and
local indexes iG and jG of the local tensor a, the assembly operation can be achieved by
simply doing:

A(iF,jF)=a(iG,jG);

This operation uses IndexFs to iterate over arbitrary positions in the tensor A and IndexGs to
iterate along the whole dimension of a. This shows the potential of mixing both types of
indexes in a practical situation. Objects iF and iG have to have the same template parameter
to comply with the index convention. The same requirement must hold for the “j” indices: jG
and jF.

A.C. LIMACHE, P.S. ROJAS2922

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://en.wikipedia.org/wiki/Structural_analysis

7 CONCLUSIONS

A new tensor library was presented. The library offers tensor indicial notation support
with Einstein summation convention. It uses a concise, simple and natural syntax, letting the
programmer write complex tensor formulas in the same way one would write them in a piece
of paper. It performs compile-time verification, and allows arbitrary contractions, not
restricting the user to the common cases. It also allows operations of matrix compositions,
very used in scientific applications.

 The library uses the template expression technique to provide single loop expression
evaluation. It provides an inherited hierarchy allowing the user to customize the Marray
class for the specific needs of the problem at hand, allowing to perform optimizations
regarding the special characteristic of the problem. This is done by passing the operator
equals and the index operator to the base class. Also iterators are provided to allow full
customization.

A balance between optimization and flexibility was achieved. The performance when
using the TinyArray class as the base class surpass a C-coded version. On the other hand, it
has also a much better performance than the classic C++ overloading approach.

The library is a nice solution to those who are tired of the long pieces of code of old C-
coding style or the slow down of C++ standard approach, specially in collaborative software
development enviroments where better legibility is required. And of course specially when
performance is an important factor.

8 FUTURE WORK

The next steps regarding the present library would be to provide a bigger spectrum of
base classes like sparse storage, or symmetric tensors.

Parallel processing is a must in scientific applications, in order to support this,
evaluations are being made to write an interface with the library PETSc.

9 APPENDIX

9.1 Naive C-style implementation

 double **db=new double*[size];
 double *da=new double[size];
 double *dc=new double[size];
 double *dd=new double[size];
 for(int i=0;i<size;i++){
 db[i]= new double[size];
 }

//here goes array initalization
//

 for(int i=0;i<size;i++){
 for(int j=0;j<size;j++){
 da[i]+=db[i][j]*dc[j]+dd[i];
 }

 da[i] += dd[i];
 }

9.2 Naive C++ overloading implementation

class Vector{
private:

double *data;
int size;

Mecánica Computacional Vol XXVII, págs. 2907-2925 (2008) 2923

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

public:
Vector(int size){

this->size=size;
data=new double[size];

}
double &operator()(int n1)
{

return data[n1];
}
double operator()(int n1)const
{

return data[n1];
}
void operator=(const Vector &a){

for(int i=0;i<size;i++)
data[i]=a(i);

}
Vector(const Vector &b){

this->size=b.size;
data=new double[size];
for(int i=0;i<size;i++)

data[i]=b(i);
}
Vector operator+(const Vector &a){

Vector ret(size);
for(int i=0;i<size;i++)

ret(i)=a(i)+operator()(i);
return ret;

}
};

class Array{
private:

double** data;
int size;

public:
Array(int size)
{

this->size=size;
data=new double*[size];
for(int i=0;i<size;i++)

data[i]=new double[size];
}
Array(Array &b){

this->size=b.size;
data=new double*[size];
for(int i=0;i<size;i++)

data[i]=new double[size];
for(int i=0;i<size;i++)

for(int j=0;j<size;j++)
data[i][j]=b(i,j);

}
double &operator()(int n1,int n2)
{

return data[n1][n2];
}

A.C. LIMACHE, P.S. ROJAS2924

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

 double operator()(int n1,int n2)const
{

return data[n1][n2];
}
void operator=(const Array &a){

for(int i=0;i<size;i++)
for(int j=0;j<size;j++)

data[i][j]=a(i,j);

}
Vector operator*(const Vector &a){

Vector ret(size);
for(int i=0;i<size;i++){

ret(i)=0.0;
for(int j=0;j<size;j++){

ret(i)+ operator()(i,j)*a(j);
}

}
return ret;

}
};

REFERENCES

Ahlander K., Einsum. http://www.ii.uib.no/~krister/EinSum.
Blinn J.F., "Optimizing C++ Vector Expressions," IEEE Computer Graphics and

Applications, vol. 20, no. 4, pp. 97-103, Jul/Aug, 2000.
Ilyin V., Kryukov A., ATENSOR-REDUCE program for tensor simplification. Institute of

Nuclear Physics, Moscow State University , 1996.
Jeremic B., Sture S., Tensor Objects in Finite Element Programming. International Journal

for Numerical Methods in Engineering, Vol. 41:113-126 , 1998.
Landry W., Implementing a High Performance Tensor Library,

http://www.oonumerics.org/FTensor/FTensor.pdf , 2002.
Limache A.C. and Idelsohn S.R., “On the Development of Finite Volume Methods for

Computational Solid Mechanics”, Mecanica Computacional, AMCA; vol. XXVI:
827843; October 2007. ISSN 16666070.

Limache A.C., MulPhys, Simulation of Physical Phenomena by Computers; CIMEC-
CONICET, Argentina, http://www.cimec.org.ar/alimache. 2008.

Veldhuizen T., Arrays in Blitz++, Proceedings of the 2nd International Scientific Computing
in Object Oriented Parallel Environments (ISCOPE'98), 1998.

Veldhuizen T., C++ Templates as Partial Evaluation. ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-Based Program Manipulation (PEPM'99), 1999.

Veldhuizen T., Expression Templates. C++ Report, Vol. 7 No. 5:26-31, 1995
Veldhuizen T., Jernigan M. E.; Will C++ be faster than FORTRAN?. Proceedings of the 1st

International Scientific Computing in Object Oriented Parallel Environments (ISCOPE'97),
1997.

Veldhuizen T. , Using C++ Template Metaprograms. C++ Report, Vol. 7 No. 4, 1995.

Mecánica Computacional Vol XXVII, págs. 2907-2925 (2008) 2925

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.cimec.org.ar/alimache.%202008
http://www.ii.uib.no/~krister/EinSum

