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Abstract. The direct problem of an elliptical hole in a uniaxially and biaxially loaded, 
homogeneous, isotropic infinite plate in plane stress is a classical result that has been 
extensively studied, especially in relation to the assessment of cracks in plates. This 
theoretical formulation leads naturally into consideration of relevant inverse problems based 
on using full field stress data, in the form of photoelastic fringes or lines of maximum shear 
stress. The resulting inverse problems are twofold: (a) from known geometry, biaxial loading 
and photoelastic response around the elliptical hole determine the material stress fringe 
value; and, (b) from known geometry, stress fringe value and photoelastic response around 
the elliptical hole determine the applied far-field loads. Modeling of the elliptical hole in a 
plate is approached analytically and using finite elements (FE). The inverse problem 
methodology used relies on least-squares optimization. Initial comparison between the 
analytical and FE approaches shows that for the experimental results of interest the FE 
approach should yield better comparisons. Application of the inverse problem methodology 
allows seamless integration between the FE model results and experimental photoelastic 
results. The robustness of this approach is tested using noisy data. 
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1 INTRODUCTION 

The existence of discontinuities in structures is a recurring theme in the research and 
design literature due to stress concentration concerns that arise due to their presence. The 
result is that classical theoretical analytical solutions have been developed for circular1 and 
elliptical holes2 in homogeneous, isotropic infinite plates, apart from complete treatises 
dealing with many other kinds of discontinuities and even considering orthotropic 
materials3,4, in an attempt to deal with standard and nonstandard hole shapes. Additionally, 
much experimental work related to this topic has contributed to a better understanding of the 
relevant issues by verifying these analytical solutions using photoelasticity5-9. Theoretical and 
experimental work also exists for finite width plates10,11, and for finite thickness plates12. All 
of these theoretical and experimental approaches may be categorized as direct or forward 
problem solutions for the discontinuities of interest, i.e., given a material of interest with 
known material properties, geometry and boundary conditions the objective is to define the 
stress, strain and/or displacement field over a region of interest. It is also possible, limiting the 
field of inquiry only to consideration of the stress field, to consider the inverse or reverse 
problem, i.e., given the geometry and full field stress response, the goal is now to determine 
the boundary stresses. When posed in this fashion, the infinite plate with a circular hole may 
be used as a means of separation of stresses and for residual stress determination5,13-19. 

The purpose of this paper is to consider the application and implications of an inverse 
problem methodology to a biaxially loaded, homogeneous, isotropic plate in plane stress with 
a centrally located elliptical hole, using full field data in the form of photoelastic fringes or 
lines of maximum shear stress20,21. Two inverse problems are posed: (a) from known 
geometry, biaxial loading and photoelastic response around the elliptical hole determine the 
material stress fringe value, i.e., the optical calibration constant of the material; and, (b) from 
known geometry, stress fringe value and photoelastic response around the elliptical hole 
determine the applied far-field loads, i.e., the problem of separation of stresses. 

2 EXPERIMENTAL RESULTS 

In an attempt to deal with these two problems the classical experimental results by Durelli 
and Murray6 are analyzed. This experimental work uses a Bakelite (BT-61-893) square plate 
model approximately 146-mm (5.75-inches) per side, with a central ellipse whose major (2a = 
25.4-mm) and minor (2b = 12.7-mm) axes align with the horizontal and vertical edges of the 
plate, respectively, whose plate thickness is 6.15-mm (0.242-inches). The plate is biaxially 
loaded by vertical and horizontal far field stresses 1σ  and 2σ , respectively, as shown 
schematically in Figure 1. Points A and B in Figure 1 refer to the points on the periphery of 
the elliptical hole that coincide with the y- and x-axes, respectively. The normal stresses at 
points A and B, Aσ  and Bσ , are directed parallel to the x- and y-axis, respectively.  Table I 
summarizes the set of experimental results that are presented in their paper, with the gray 
coloring representing the cases that were analyzed and whose results are included in this 
paper. The results shown in Table I are obtained from the following equations derived by 
Durelli and Murray6 which yield the values at points A and B from known far field stresses, 
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Figure 1: Schematic of a plate with an elliptical hole in biaxial tension in Durelli and Murray [6] 

 
Table 1: Isochromatic Values for Experiments in Durelli and Murray [6] 

 
 
It is possible to resolve the inverse problem alluded to above by using these equations, i.e., to 
obtain the far field stresses 1σ  and 2σ  from knowing the stresses at the periphery of the 
elliptical hole at points A and B. By algebraic manipulations for a = 2b, the values for 1σ  and  
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2σ  are, 
 ( ) ( )1 22 9     and    5 9A B A Bσ σ σ σ σ σ= + = +  (2) 
A review of the stress-optic law, for monochromatic light, is necessary at this point to 
understand the formation of isochromatic fringes (lines of equal level of extinction or constant 
maximum shear stress). Maxwell in 1853 noted that the changes in the indices of refraction of 
a material exhibiting double refraction are linearly proporcional to the loads, and thus related 
to stresses and strains20, 21. For two-dimensional plane-stress bodies, the stress-optic law for 
light at normal incidence to the plane of a transparent model is written as 
 ( )( )1 22 /t cπ λ σ σΔ = −  (3) 
where Δ is the relative retardation developed between components of a light beam 
propagating normal to the plane of the plate, t is the plate thickness, c is the speed of light, λ 
is the wavelength of light, and 1σ  and  2σ  are the in-plane principal stresses. This form is 
usually further simplified to  
 1 2 /n f tσσ σ− =  (4) 
where / 2n π=Δ  is the relative retardation in terms of cycles of retardation, and counted as 
the fringe order n, and the material fringe value fσ  is a property of the model material for a 
given wavelength of light, i.e., /f cσ λ= . Equation (4) may be re-written as  
 ( )max 1 2 / 2 / 2n f tστ σ σ= − =  (5) 

which implies that the maximum shear stress [or the prinicpal stress difference ( )1 2σ σ− ] 
may be determined from measuring the relative retardation or fringe order n, and by 
ascertaining the value of the material fringe value fσ  by means of calibration. Also, it is clear 
that the order of extinction n depends on the principal stress difference and the wavelength of 
the light λ. When the transparent model is viewed in monochromatic light, in a dark-field 
polariscope arrangement, the isochromatic fringe pattern appears as a series of dark bands 
since the intensity of the light is zero when n = 0, 1, 2, 3, …  For a light filed polariscope 
arrangement, the intensity of light is zero when n = 0.5, 1.5, 2.3, … 
 
Note that at the hole boundary, e.g., at point A, the maximum shear stress expression is20 
 ( )max 0 2 2A An f tστ σ= − =  (6) 
where nA is the fringe order at point A, fσ is the material stress fringe value, and t is the plate 
thickness, following the stress-optic law.  
 This implies that the stress at point A is given by  
 A Af n tσσ =  (7) 
The same is true for point B, with the implication that equations (2) may be re-written in 
terms of the fringe orders as follows, 
 ( )( ) ( )( )1 22 9     and    5 9A B A Bf t n n f t n nσ σσ σ= + = +  (8) 
Table I is a reflection of this practice in Durelli and Murray6. This means that no value for 
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material stress fringe value is specified and it is not possible, given the information in this 
reference, to resolve the first inverse problem posed above, i.e., from known geometry, 
biaxial loading and photoelastic response around the elliptical hole to determine the material 
stress fringe value. Ultimately what this means is that all stress values are given in terms of 
fringe order values. 

3 THEORY: THE ELLIPTICAL HOLE IN A BIAXIALLY LOADED PLATE 

In examining the experimental results, the first issue that needs to be dealt with is the issue 
of whether a theoretical analytical formulation for the biaxially loaded infinite plate is 
sufficient to describe the experimental results, or whether a finite element (FE) model is 
needed to better approximate them if the experimental results are more reflective of a finite 
width plate. To begin and to lend generality to the theoretical approach under consideration 
the plate material is assumed orthotropic3,22,23. Figure 2 shows a schematic of a homogeneous, 
anisotropic uniaxially loaded infinite plate with an elliptical hole.  
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Figure 2: Schematic of a plate with an elliptical hole in uniaxial tension (adapted from Savin [3]) 

 
The coordinate axes are chosen in the directions of the principal ellipse axes, where the 

semi-axes of the ellipse are denoted by a and b. The load p is applied on the plate at an angle 
α from the horizontal. The equations that describe the normal and shear stresses, respectively, 
are given by Savin3 as, 

 

( ) ( ) ( )
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⎡ ⎤= + Φ +Ψ⎣ ⎦

⎡ ⎤= − Φ + Ψ⎣ ⎦

 (9) 

where “Re” in equation (9) means the real part of the complex expression in brackets, where, 
s1 = α1 + i β1 and s2 = α2 + i β2  are the complex roots of the characteristic equation 
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 4 3 2
11 16 12 66 26 222 (2 ) 2 0a s a s a a s a s a− + + − + =  (10) 

and the ija ’s are defined in terms of the elastic constants, for the specially orthotropic case, as 
follows, 

 11 1 22 2 12 12 1 21 2 16 26 66 121 ; 1 ; ; 0; 0; 1a E a E a E E a a a Gν ν= = = − = − = = =  (11) 

The complex functions ( )'
1o zΦ  and ( )'

2o zΨ  take the form,  

 ( ) ( ) ( )
' 1

1 2 2 2 2
1 2 1 1 1

1
2o

zi pbz
s s a is b z a s b

⎧ ⎫
⎪ ⎪Φ = −⎨ ⎬− + − +⎪ ⎪⎩ ⎭

 (12) 

 ( ) ( ) ( )
' 2

2 2 2 2 2
1 2 2 2 2

1
2o

zi pbz
s s a is b z a s b

⎧ ⎫
⎪ ⎪Ψ = −⎨ ⎬− + − +⎪ ⎪⎩ ⎭

 (13) 

for complex quantities z1 = x + s1 y and z2 = x + s2 y. Given this theoretical formulation that 
is applicable to orthotropic materials it is possible to derive the equations for the isotropic 
case by setting 1 1.001s i= ⋅  and 2 0.999s i= ⋅ . This then defines the stress state ( ), ,x y xy i

σ σ τ  

at any point ( ),i ix y around the elliptical hole for any applied uniaxial stress. To obtain the 
needed biaxial stress state, as required for the experimental results by Durelli and Murray6, 
the principle of superposition is applied for the case where 2α π=  and 1p σ= , and the case 
where 0α =  and 2p σ= , schematically shown in Figure 1. The composite equations that are 
obtained are the solution to the direct problem, from which the isochromatic fringes, or lines 
of maximum shear stress are used to represent the full field stresses. The stress-optic law is 
expressed by the equation20, 21, 

 ( ) ( )( )
22 2

max 2 2 2x y xyp q n f tστ σ σ τ⎡ ⎤= − = = − +⎢ ⎥⎣ ⎦
 (14) 

where p and q are the principal stresses at a point, n is the fringe order, fσ is the material stress 
fringe value, and t is the plate thickness. Based on these equations the stress field and 
resulting isochromatics or lines of maximum shear surrounding an elliptical hole in an 
isotropic biaxially loaded infinite plate are generated for any set of far field stresses 1σ  and 

2σ . Recall that all maximum shear stress and other stress values may be specified as fringe 
orders.  

4 THEORY: THE FINITE ELEMENT MODEL FOR A FINITE PLATE 

Figure 3 shows the discretized model used in implementing the finite element model. 
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Symmetry considerations allow only a quarter of the plate to be used. The plate size is 
comparable to that of the experiment, i.e., for the quarter plate model each side is 
approximately 73-mm (2.875-inches) per side, with a central ellipse whose major (a = 12.7-
mm) and minor (b = 12.7-mm) semi-axes align with the horizontal and vertical edges of the 
plate, respectively, for plate thickness of 6.15-mm (0.242-inches). The model uses three-node 
triangular isoparametric plane-stress elements, and includes 16,096 elements and 64,930 
nodes. The left and lower boundaries of the model have been constrained to not move in the 
x- and y-directions, respectively. The upper and right boundaries are subjected to the applied 
normal stresses, 1σ  and 2σ , respectively. 

 
Figure 3: Schematic diagram of the finite element mesh and boundary conditions of the symmetric quarter-

plate with an elliptical hole in biaxial tension 

5 THE INVERSE PROBLEM METHODOLOGY 

The direct or forward analytical and FE solutions presented in the previous sections are the 
basis to implement an inverse or reverse problem methodology to resolve the problem of 
separation of stresses. Figure 4 shows the inverse problem methodology that is applied in the 
solution of the analytical problem, and is easily adapted for use with the FE solution. The 
implementation procedure evolves from the initial direct problem definition that defines the 
full field stresses in the infinite plate with an elliptical hole. Following the outer path of the 
block diagram the input parameters: plate geometry, elliptical hole size, material properties, 
boundary conditions (loads and constraints); and, output parameters: full field stresses and 
isochromatics, are defined. Once these assumptions are made and the model is implemented it 
is possible to generate the output values at any number of points in the model, generating data 
files that include the isochromatic fringe order at a corresponding Cartesian coordinate 
location. These simulated data sets are analogous to actual experimental data which are saved 
in a file as if it was data collected from an actual experiment. Figure 5 shows a plot of the 
isochromatic lines, or lines of maximum shear stress20, 21, for the analytical solution for an 
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infinite plate with an elliptical hole given the geometric properties defined above, for far field 
stress loads of  1 13.80 MPaσ =  and 2 6.90 MPaσ = , and a material stress fringe value of 

15.87 /f kPa m fringeσ = − .  
 

 
 

Figure 4: The Inverse Problem Methodology 
 

 
 

Figure 5: Analytically Calculated Full Field Isochromatics for the Infinite Plate with an Elliptical Hole  
(a/b =2) ;far field loads: 1 13.80 MPaσ =  and 2 6.90 MPaσ = , 15.87 /f kPa fringe mσ = − , 6.15t mm=  

5.1 Comparison of the Analytical and Finite Element Models 

The results shown in Figure 5 may be compared qualitatively to those shown in Figure 6 
taken from Durelli and Murray6. Notice that Figure 6 shows asymmetrical features which are 
clearly not evident in Figure 5. At this point only a qualitative comparison is possible since no 
systematic approach to making a quantitative comparison has been presented. A question that 
arises from a cursory comparison of Figures 5 and 6 is whether or not the theoretical 
representation shown in Figure 5 may be used to accurately represent an experimental result 
such as that of Figure 6. One approach to verifying this is to compare the analytical 
representation to a finite element (FE) simulation. Figure 7 shows a sequence of images 
calculated using the previously described FE model: (a) one, (b) two, (c) four, and (d) 16 
times the experimental plate size. Careful scrutiny of these images shows significant variation 
between (a) and (d), but not between (c) and (d). Also, when images 7(d) are compared to the 
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images in Figure 5 they are clearly the same. In summary, when a comparison is made 
between the analytical and the FE models, there is clear coincidence between these two 
models for a FE model plate size of 16 times the experimental model. In conclusion, the FE 
model is more relevant if what is needed is to compare these FE model results to the 
experimental results in Durelli and Murray6. Therefore, the FE model will be used to 
implement the inverse problem methodology described in this paper, rather than the analytical 
solution. 

 

 
Figure 6: Experimental Full Field Isochromatics for the Infinite Plate with an Elliptical Hole (a/b = 2); far 

field loads: 1 2.66σ =  and 2 1.33σ = ; 0Aσ =  and 12Bσ = , 6.15t mm=  (adapted from [6]) 
 

 
 

Figure 7: Finite Element Calculated Full Field Isochromatics for the Finite Plate with an Elliptical Hole 
(a/b = 2); far field loads: 1 13.80 MPaσ =  and 2 6.90 MPaσ = , 15.87 /f kPa fringe mσ = − , 6.15t mm=  

5.2 Optimization Approach 

Referring back to Figure 4, but now following the inner path, a recursive inverse problem 
procedure needs implementation using the previously generated simulated experimental data 
sets. In implementing these recursive inverse problem procedures, initial values for the 
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parameters of interest, i.e., the boundary stresses 1σ  and 2σ  need to be defined and re-
defined, if appropriate, to verify convergence. Once convergence is verified an assessment is 
made as to the success in generating the analytical input values used to solve the direct 
problem initially solved. The recursive inverse problem procedure that is implemented relies 
on nonlinear least squares, which in its simplest form follows a Newton-Raphson approach21, 

24-27, as described below, and can easily be adapted to a Levenberg-Marquardt approach28, 29.  
Briefly, to implement this inverse problem for stress isochromatics the objective function that 
describes the relationship between experimental and FE calculated results is 

 1 2 1 2Experimental FE
( , ) ( , )i i iF F eσ σ σ σ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= +  (15) 

where, 1 2 Experimental
( , )iF σ σ⎡ ⎤⎣ ⎦ represents the experimental fringe order data at some point 

( , )i ix y  in the specimen; 1 2 FE
( , )iF σ σ⎡ ⎤⎣ ⎦ represents the FE evaluation at the same point, with 

undetermined coefficients 1 2( , )σ σ , the applied specimen boundary stresses; and, ie  is the 
random error. This equation implies that the random error is zero if the FE program exactly 
predicts the experimental values at every point on the specimen. The goal in this exercise is to 
minimize the errors in the objective function. More specifically, the experimental values are 
represented by the fringe order data at each point in the specimen, i.e., 

 ( ) ( ) ( )1 2Experimentalmax 2 2ii i i
n f tσσ στ⎡ ⎤ ⎡ ⎤= − =⎣ ⎦ ⎣ ⎦  (16) 

As mentioned previously, only fringe orders are used to make assessment of stresses in the 
experimental model. The numerical values for the stress state at each corresponding point on 
the specimen from the FE model are given by ( )ixσ , ( )

iyσ , and ( )
ixyτ , from which values for 

maximum shear stress, ( )
FEmax i

τ⎡ ⎤⎣ ⎦ , are obtained, all in fringe orders units. The maximum 

shear stress values obtained from the FE model are,  

 ( ) ( ) ( )( ) ( )
2 2

max Numerical
2

i i i ix y xyτ σ σ τ⎡ ⎤ ⎡ ⎤⎡ ⎤ = − +⎣ ⎦ ⎣ ⎦⎣ ⎦
 (17) 

This results in the following functional after rearranging Equation (15), 

 ( ) ( )2 2

max maxNumerical Experimental
( , , ) 0i X Y XY i i

F σ σ τ τ τ⎡ ⎤ ⎡ ⎤= − =⎣ ⎦ ⎣ ⎦  (18) 

or, 

 ( ) ( ) ( ){ } { }
2 2 2( , , ) 2 0i X Y XY ii i ix y xyF n f tσσ σ τ σ σ τ⎡ ⎤ ⎡ ⎤= − + − =⎣ ⎦ ⎣ ⎦  (19) 

A Taylor’s series expansion of Equation (19) leads to, 

 ( ) ( ) ( ) ( )1 1 2 21
. . .i i i ik k k k

F F F F H O Tσ σ σ σ
+
= + ∂ ∂ Δ + ∂ ∂ Δ +  (20) 
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where k refers to the kth iteration step, 1σΔ  and 2σΔ  are corrections to the previous estimates 
of 1σ  and 2σ , respectively, and . . .H O T  stands for Higher Order Terms. The explicit relations 
for the correction terms are, 

 ( ) ( ) ( ) ( )1 1 1 2 2 21 1
;

k k k k
σ σ σ σ σ σ

+ +
Δ = − Δ = −  (21) 

For experimental and FE calculated values that are close to each other implies that ( ) 1i k
F

+
 in 

Equation (20) approaches zero. Reordering Equation (20) and expressing it in matrix form, 
for m data points, 

 { } [ ]{ }F a σ= Δ  (22) 

where 

 { } [ ] { }

1 1

1 2
1

2 2
2 1

1 2
2

1 2

; ;
k k

m k
m m

k

F F

F
F F

F
F a

F
F F

σ σ

σ
σ σ σ

σ

σ σ

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥−⎧ ⎫
∂ ∂⎢ ⎥⎪ ⎪− Δ⎧ ⎫⎪ ⎪ ⎢ ⎥∂ ∂= = Δ =⎨ ⎬ ⎨ ⎬⎢ ⎥ Δ⎩ ⎭⎪ ⎪ ⎢ ⎥

⎪ ⎪− ⎢ ⎥⎩ ⎭ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

#
# #

 (23) 

Pre-multiplication of Equation (22) by [ ]Ta , and solving for the correction factors{ }σΔ  

yields, { } [ ] [ ] { }1 Tc a Fσ −Δ = , where [ ] [ ] [ ]Tc a a= . This iteration process ends when an 
acceptable pre-defined convergence value is attained. 

5.3 Examples: Finite Element Based Calculation of Boundary Stresses 

The procedures outlined in Figure 4 and explained above are implemented and tested using 
computer generated data to obtain the far field stresses for the analytical model. This is 
equivalent to solving the problem of separation of stresses. One way to assess the validity of 
this inverse problem methodology is to examine its robustness by adding noise to the full field 
isochromatics data and to test for: (a) the ability to recover the original far field stresses; and, 
(b) whether all regions around the periphery of the hole have the same influence in recovering 
the far field stresses. Similar conclusions should apply to FE based results. 

 
Random error in the stress isochromatics - The addition of noise to computer generated 
experimental data is equivalent to experimental measurements which oftentimes includes 
noise or random error. Noisy data allows determining how much noise the nonlinear least 
squares approach can tolerate. The data files or output files from data collection around the 
elliptical hole in the plate have added random signals in the calculated maximum shear stress 
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values. These output files are the input data to implement the inverse problem procedures. 
The total maximum shear stress, in fringe order units, at every point of interest is modified as 
follows, 

 ( ) ( )max max 2 itot ii
f t RNVστ τ ξ⎡ ⎤ = + ⋅ ⋅⎣ ⎦  (24) 

where the product ( )22f tσξ  is the noise variance, and is defined for 0 1ξ≤ ≤  and ratio of 
fringe value to plate thickness, 1f tσ =  Pa per fringe. The intent of arbitrarily setting this 
ratio to 1 is to work in terms of fringe orders.  RNVi is a normally distributed Random Number 
Vector, m random numbers long, with a mean value of zero, variance 2 1σ = , and standard 
deviation 1σ = . Two extreme cases of far field stress loading are examined: Case 1 considers 

1 5σ =  and 2 0σ = , or k = ∞;  and, Case 2 looks at 1 0σ =  and 2 5σ = , or k = 0. Note that 

1 2/k σ σ=  is the ratio of the vertical to the horizontal far-field or applied boundary stresses. 
Case 2 is shown in Figure 8 for different levels of noise. Even for noise levels of 0.70ξ =  and 
using only 121 points within the noisy stress field of the first quadrant of the plate it was not 
possible to generate absolute errors greater than 5% in estimating far field stress values of 1σ  
and 2σ .  Thus, the ability to recover the original far field stresses could be checked; but it was 
not possible to test whether all regions around the periphery of the hole have the same 
influence in recovering the far field stresses. 
 

 
Figure 8: The effect of noise variance, ξ2, on the light-field isochromatics for σ1 = 0, σ2 = 5 
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Finite Element Based Inverse Analysis - Some observations to implement the FE based 
optimization approach using least squares are needed. To start calculations using the 
quantities shown in Equation (23), the terms related to { }k

F and [ ]k
a  should be defined. Once 

the starting values of ( )1 0
σ  and ( )2 0

σ , the farfield stresses, are known, the definition of the 

{ }k
F  values is straightforward. To obtain the partial derivatives 

1 1 2 1 1, , , mF F Fσ σ σ∂ ∂ ∂ ∂ ∂ ∂… , etc., at the initial  far field stress values of ( )1 0
σ  and ( )2 0

σ  
each partial derivative is treated as follows, 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 2 21 11 1 2 2

1 1 1 1 1 1 1 11 1

1 11 11 1

1 1 1 1 2 2 2 21 1

, ,

, ,  etc.

k k k k

k k k k

m mm m k k k k

k k k k

F F F FF F F F

F F F FF F F F

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ

− −

− −

− −

− −

− −∂ Δ ∂ Δ
= = = =

∂ Δ − ∂ Δ −

− −∂ Δ ∂ Δ
= = = =

∂ Δ − ∂ Δ −

#  (25) 

This implies that two different sets of starting values for k = 1, i.e., ( ) ( )1 10 1
,σ σ⎡ ⎤⎣ ⎦  and 

( ) ( )2 20 1
,σ σ⎡ ⎤⎣ ⎦  need to be defined. For example, to calculate the m values of 1mF σ∂ ∂ , values 

for ( )1 0
σ and ( )1 1

σ  are assumed. All values of { }0mF  and { }1mF  are calculated, assuming that 

( ) ( )2 2 0
σ σ= . In a similar way, to calculate the m values of 2mF σ∂ ∂ , values for ( )2 0

σ and 

( )2 1
σ  are assumed. All values of { }0mF  and { }1mF  are calculated, assuming that ( ) ( )1 1 0

σ σ= . 

Once all of the partial derivatives are defined, this allows fully defining [ ]k
a , after which all 

calculations are performed. This calculation scheme was tested with computer generated data 
and was found to give excellent results. The intent is now to show the application of the 
previously defined inverse problem methodology to experimental results in Durelli and 
Murray6. The experimental results used to assess the capabilities in the implementation of the 
inverse problem methodology are for values of nominal far field stress ratio k = 0, 1, and 
infinity. Figure 9 shows a flowchart with the procedures needed to implement the specified 
calculations. The actual implementation of the activities shown in this chart implies that the 
recursive inverse analysis procedure is fully tested and is ready to be applied to 
experimentally generated data. This flowchart shows that a prerequisite is a well-defined 
forward experimental model, i.e., the design of the biaxial loading of a thin plate in plane 
stress with a central elliptical hole. The experimental results in Durelli and Murray6 have fully 
defined input and output parameters that yield the light and dark full field isochromatics. This 
allows the harvesting of experimental results/data, which take the form of position 
coordinates, ( ),i ix y , and corresponding fringe orders, in , around the hole in the photoelastic 
plate. These data sets are then used to perform the recursive inverse analysis. The inverse 
problem methodology calculations start with the reading of the experimental data values that 
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are collected. Then, the initiation parameters are established and the needed recursive analysis 
is performed with an initial attempt to verify convergence. Once convergence is achieved, by 
modifying the initiation parameters, the calculation convergence error is evaluated. If the 
initiation parameters are found to be adequate, the results are then verified.  
 

 
 

Figure 9: Flowchart Outlining the Experimental Side of the Inverse Problem Methodology 
 
The three previously mentioned experimental results are now examined in detail: 

Example 1: This is the first of three examples that analyze experimental results found in 
Durelli and Murray6 to assess separation of stresses. Figure 10 shows the light and dark field 
images chosen for analysis for experimental far field stress values:  1 2σ = −  and 2 2 / 3σ = , or 

1 2 3k σ σ= = − . These and all images used for analysis are obtained by scanning them at a 
resolution level of 800 dots per inch from a copy of the journal. Both the light field and dark 
field isochromatics are analyzed. Data is collected, using SigmaScan/ImageTM software, from 
all four quadrants of the image assuming that the x- and y-axes are located at the center of the 
elliptical hole.  

 
Figure 10: Experimental Full Field Isochromatics for the Plate with an Elliptical Hole (a/b = 2); Nominal Far 

Field Stresses: 1 2σ = −  and 2 2 / 3σ = ; 3.333Aσ =  and 10.667Bσ = −  (adapted from [6]) 
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Table 2 shows the distribution of the various collected data sets, estimated along the fringe 
centers, among associated fringe orders and image quadrants. After data collection it was 
necessary to scale the pixel locations by using the average of the measurement of the major 
and minor axes of the radius of the hole of 18.60 and 18.86 pixels per millimeter, for the light 
and dark fields, respectively. Additionally, since the FEM model only considers the top right 
quadrant of the plate because of symmetry considerations, the collected data sets were folded 
over to reflect this. This has the potential to add additional error, if the experimental image is 
not fully symmetric as close examination of the experimental results reveals. An additional 
source of error is due to rotational misalignment of the experimental image with respect to the 
axes of symmetry.  

Table 2: Fringe Order Data Collection by Quadrant from Experimental Full Field Isochromatics for the Plate  
with an Elliptical Hole ( 2a b = ); far field loads: 1 2σ = − , 2 2 3σ = ; 3.333Aσ = , 10.667Bσ = −  

 

 

Analysis of the data leads to the values for 1σ , 2σ  and 1 2k σ σ= , shown in Table 3a, which 
shows three sets of results for data sets from the four quadrants and an additional combined 
data set of all four quadrants: (a) the results on the left correspond to the dark field 
isochromatics data; (b) the results in the center correspond to the light field isochromatics 
data; and, (c) the results on the right correspond to the consideration of the combined data sets 
of light and dark field isochromatics.  
Table 3a: Determination of Far Field Stresses using Data from Individual and Combined Quadrants for the Plate 

with an Elliptical Hole ( 2a b = ); Far Field Stresses: 1 2σ = − , 2 2 3σ =  
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In Table 3a the reference values cited by Durelli and Murray6 are also included. Notice that 
there is a discrepancy between the calculated values and the reference values: the discrepancy 
is smaller for the 1σ  value than for the 2σ  value. The calculated values do maintain certain 
predictability between corresponding data sets. Figures 11 and 12 show the reconstructed 
composite images using these various data sets and their comparison to the experimental 
results, for light and dark filed isochromatics, respectively.  

 
Figure 11: Comparison of Reconstructed and Experimental Light Field Isochromatics for the Plate with an 

Elliptical Hole (a/b = 2); Nominal Far Field Stresses: 1 2σ = −  and 2 2 / 3σ =  
 

 
Figure 12: Comparison of Reconstructed and Experimental Dark Field Isochromatics for the Plate with an 

Elliptical Hole (a/b = 2); Nominal Far Field Stresses: 1 2σ = −  and 2 2 / 3σ =  
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Notice that each reconstructed quadrant yields a different stress distribution, which serves to 
point out the differences that exist between quadrants in the experimental results. These 
differences also serve to point out that experimental biaxial loading is not perfect, showing 
the experimental difficulties inherent to implementing biaxial loading. The experimental 
researchers seem to have greater control when imposing the vertical load, 1σ . Table 3b shows 
similar results for points A and B identified in Figure 1 for the same parallel values of 1σ  and 

2σ  in Table 3a. Similar observations as before may be made, noting that the value for Aσ  is 
closer to its reference value than the value for Bσ . Note that the reference values are 
applicable to those of an infinite plate. 
Table 3b: Determination of Hole Surface Stresses Perpendicular to the x-and y-axes using Data from Individual 
and Combined Quadrants for the Plate with an Elliptical Hole ( 2a b = ); Far Field Stresses: 1 2σ = − , 2 2 3σ =  

 

 
 
Example 2: Tables 4a and 4b, and Figures 13 and 14 show the results for nominal far field 
stress values of  1 0σ =  and 2 3σ = , or 1 2 0k σ σ= = . The most noticeable feature in the 
reconstruction of the experimental fringes is that a great discrepancy exists between the left 
and right hand sides of the images, which reflect what also occurs with the experimental 
images. This seems to point to some inherent feature of the experimental setup that in some 
way hinders the application of horizontal or 2σ  far field loads, corroborating the observation 
made previously for Example 1. Note that the values for 1σ  are approximately zero, and the 
values of 2σ  are closer to 2.5 than to 3.0. Also, the value for kAB seems to vary widely, 
reflecting the inconsistency between the left and right sides of the plate. 
 
Table 4a: Determination of Far Field Stresses using Data from Individual and Combined Quadrants for the Plate 

with an Elliptical Hole ( 2a b = ); Far Field Stresses: 1 0σ = , 2 3σ =  
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Table 4b: Determination of Hole Surface Stresses Perpendicular to the x- and y-axes using Data from Individual 
and Combined Quadrants for the Plate with an Elliptical Hole ( 2a b = ); Far Field Stresses: 1 0σ = , 2 3σ =  

 
 

 
Figure 13: Comparison of Reconstructed and Experimental Light Field Isochromatics for the Plate with an 

Elliptical Hole (a/b = 2); Nominal Far Field Stresses: 1 0σ =  and 2 3σ =  

 
Figure 14: Comparison of Reconstructed and Experimental Dark Field Isochromatics for the Plate with an 

Elliptical Hole (a/b = 2); Nominal Far Field Stresses: 1 0σ =  and 2 3σ =  
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Example 3: Figures 15 and 16, and Tables 5a and 5b show the results for nominal far field 
stress values of  1 3.10σ =  and 2 0σ = , or 1 2k σ σ= = ∞ .  

 
Figure 15: Comparison of Reconstructed and Experimental Light Field Isochromatics for the Plate with an 

Elliptical Hole (a/b = 2); Nominal Far Field Stresses: 1 3.1σ =  and 2 0σ =  

 
Figure 16: Comparison of Reconstructed and Experimental Dark Field Isochromatics for the Plate with an 

Elliptical Hole (a/b = 2); Nominal Far Field Stresses: 1 3.1σ =  and 2 0σ =  

 
The most salient feature in the comparison of Figures 15 and 16 is that though some 
asymmetry exists between the left side and right side of the experimental result, which is 
reflected in the reconstructions of the quadrant data; there is less of an asymmetry between 
the top and bottom portions of the experimental specimen. Note also that the values for 2σ  
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are approximately zero, and the values of 1σ  are closer to 2.5 than to 3.10. Table 5b also 
shows that kAB is consistently close to a value of 0.20 which is the theoretical value for the 
infinite plate. 
 
Table 5a: Determination of Far Field Stresses using Data from Individual and Combined Quadrants for the Plate 

with an Elliptical Hole ( 2a b = ); Far Field Stresses: 1 3.1σ = , 2 0σ =  

 
 

Table 5b: Determination of Hole Surface Stresses Perpendicular to the x- and y-axes using Data from Individual 
and Combined Quadrants for the Plate with an Elliptical Hole ( 2a b = ); Far Field Stresses: 1 3.1σ = , 2 0σ =  

 

6 DISCUSSION 

An inverse problem methodology is implemented to critically examine the problem of a 
homogeneous, isotropic biaxially loaded plate with a centrally placed elliptical hole. This 
methodology requires that the problem be examined initially with an analytical approach, and 
also with a finite element model, to decide which model reproduces the experimental results 
by Durelli and Murray6 best, as either an infinite or finite plate. The results clearly show that 
the plate used in the experiments corresponds to a finite plate geometry and needs to be 
examined from that perspective. To gain some appreciation for the nonlinear least squares 
approach, which is used to implement the inverse problem methodology, it is found that it is 
fairly robust when varying levels of noise are taken into account in evaluating the far field 
stresses using an analytical model. The implementation of the inverse problem methodology 
using a finite element based approach is performed for three experimental sets of results for 
values of nominal far field stress ratio k = 0, 1, and ∞ . Harvesting of data from all four 
quadrants, but using only a single quadrant finite element model, it is possible to reconstruct 
and represent the data obtained by this inverse problem methodology using composite images. 
These images clearly reflect the asymmetry that exists in the experimental data, and serves to 
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shed further light on the experimental procedures used: (a) the implementation of biaxial 
testing is difficult, even when performed by the best practitioners; (b) application of the 
vertical load seems to be more experimentally feasible than application of horizontal loading; 
and, (c) having flexibility in analytical or numerical modeling serves to shed light on the 
experimentation that is performed.  

7 SUMMARY AND CONCLUSIONS 

Several objectives have been accomplished by using an inverse problem methodology in 
this paper: (1) posing an inverse problem for a homogeneous, isotropic finite plate with a 
central elliptical hole in photoelasticity, i.e., consideration of this approach as a means to 
assess the far field stresses applied on the plate; (2) assessing the plate size needed to consider 
the existence of an elliptical hole with semi-axes ratio a/b = 2 as being in an infinite plate; (3) 
re-examining experimental results for a finite biaxially loaded plate with a central elliptical 
hole using finite elements to model the plate; and, (4) reconstruction of the experimental 
results which allows a careful assessment of the limits of the experimental and theoretical 
models.  

In summary, application of experimental or analytical and/or numerical work alone does 
not allow to fully understand a practical problem. It seems that the better approach is to use 
experimentation as a means to collect full field experimental data, which is then used to 
perform the theoretical/numerical reconstruction of the experimental results. This allows a 
check on the actual experimental conditions that were to be addressed, e.g., applied far field 
stresses. At the same time this serves to reassess the theoretical/numerical model to determine 
what the correspondence is between the experiment and its theoretical framework. This opens 
up a new, more organized and methodical way to complement the use of experimental and 
analytical / numerical capabilities using an inverse problem methodology. This type of 
approach also serves to promote the posing and searching for the inverse problems inherent in 
solving direct problems, which helps in further clarifying the problem that is being addressed, 
with the potential of allowing the calculation of parameters which prior consideration did not 
permit. 
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