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ABSTRACT

We discuss an optimization procedure for improving three-dimensional finite element meshes. Our method can be
effectively coupled with any automatic mesh generator in order to obtain a triangulation without badly distoried
elements. In this way, we are able to weaken the requirements on the generator, allowing it to produce singular
elements, and post-process the result to get a valid mesh.

Even though several other methods to improve finite element meshes already exist, the proposed one is the first (o
incorporate what finite element practitioners have for long known: One bad element renders the mesh useless. We
report some very encouraging results with a guite crude algorithm. Our conclusion is that building meshes combining
an initial generation step followed by an optimization step makes the meshing of arbitrary domains much more
reliable, as compared to the usual approach of precluding distorted elements during the initial generation stage.

INTRODUCTION: HOW IS A 3D MESH BUILT?

The generation of a three-dimensional finite element grid in a general domain is by no means a simple task. For
Delaunay-based and Frontal-based strategies, the generation procedure can be divided into the following steps:

Step 1: Geometrical description of the domain. This is usually accomplished by means of a CAD output.

Step 2: Surface mesh generation. A finite element mesh is constructed over the boundary of the domain. An
efficient algorithm for this purpose has been recently proposed by Vénere& Arnica [21], it allows for mesh
grading according to user's needs.

Step 3: Volume mesh generation. Our experience mainly concerns two of the several existing alternatives for this
step, namely Delaunay and Frontal volume generators.

Delaunay scheme

3D.a. Generation of points: The nodes of the
triangulation are created according to a pre-specified
density function. Our current choice is the 3D
extension of the algorithm introduced by
Dari&Vénere [7].

3D.b. Triangulation: The Delaunay mesh
containing the nodes is generated, by Bowyer-
Watson algorithm. Other variants create the nodes
while generating the mesh [15,22].

3D.c. Boundary recovery: The Delaunay mesh is
not in general compatible with the boundary mesh
generated in Step 2. The mesh must thus be modified
to recover boundary edges and boundary faces. The
procedure we are using is described in {4], other
possibilities can be found in [9,22].

Frontat scheme

3F.a. Triangulation: Using the boundary mesh as
initial front, advance the front generating new nodes
and triangles until the whole of the domain is filled
and the front collapses.
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QUALITY: HOW GOOD IS A 3D MESH?

Not all meshes are suitable for finite element calculations. The approximation error depends on the size and the
shape of the elements. The element sizes result as a compromise between accuracy and computing cost. The sizes
may vary through the domain according to an error estimate or, perhaps, to user's experience. The element shapes
set apart good generators from bad ones.

Typically, the element shape appears in the error estimate as a factor A, /p,, with h, the diameter of element K
and p, the radius of the inscribed sphere. This quotient is thus a measure of the quality of a finite element.

To keep the discussion at a more intuitive level, we will speak about the angles contained in a mesh. More
specifically, we will consider 3D meshes consisting of linear tetrahedra. It can be proved [4] that the quotient

hy | py is bounded from above for all elements of a family of triangulations if and only if the angles of the mesh
are bounded from below by some positive constant. By angles in the previous statement we refer to both the angles
between adjacent faces and the angles between adjacent edges. Hence, the angles of the mesh can also be used to
measure its quality.

We should remark that Krizek [13,14] has proved that most pernicious to the approximation properties of a finite
element method are large angles (close to 180 degrees), while small ones can sometimes be harmless (and
necessary, e.g. to cover a thin slot).

There exists another alternative, less costly in terms of floating-point operations. Distorted elements can be
identified looking for small values of the quotient ¥, / h}, where ¥, stands for the volume of element K.

We will assume that the boundary mesh does not contain badly distorted elements. The procedure of
Vénere&Arnica {21] yields meshes satisfying this condition. The question now is: How good is the quality of the
meshes generated following the methods described in the previous section (Step 3)?

DELAUNAY MESHES AND QUALITY

Bad-quality clements that appear in a mesh generated by the Delaunay-based method mainly come from three
sources: (1) Abruptly varying point density, (2) Almost planar Delaunay elements (slivers), and (3) Distorted
elements generated during boundary recovery.

Such elements can have angles of zero degrees and of 180 degrees (within round-off error). In our experience,
practically all meshes of more than, say, 30000 tetrahedra, contain at least one element with an angle greater than
179.90 degrees.

If the mesh generation is programmed without care, the number of bad elements can increase significantly. As the
nodal positions define the Delaunay mesh, it is important to ensure that the point-generation scheme (Step 3D.a)
produces smoothly varying point densities; and to avoid the insertion of points too close to boundary faces. Also,
the prescribed point density must be compatible with the density of the surface mesh. Another important detail is
that the set of elements that do not pass the Delaunay test must be, by construction, connected, precluding round-
off errors from producing a disconnected set.

The state of the art is that, even with the best Delaunay-based generator available, bad elements do appear. And the
same happens using a frontal method, as we proceed to discuss.
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FRONTAL GENERATORS AND QUALITY

The idea of a front-advancing scheme [16,17,18), that begins at the boundary of the domain and generates new
points and elements as it progresses inwards, is very elegant and attractive. Moreover, the difficulty of recovering
the boundary mesh is avoided. When the time comes to implementation, however, much of this elegance is lost. In
fact, notice that not always a new node is created to generate a new tetrahedron (otherwise, the number of faces in
the front would grow to infinity). Several tests must thus be performed to determine whether a new point must be
created, and where to do so. Even if an already existing node will be used to advance the front, it must be tested if
the new edges will intrude in already existing elements and, also, if any of the already existing edges will pierce
the new faces we are generating. As a result, a frontal generator spends most of its computing time performing
floating-point test operations. These tests are "passed” or not according to several user-defined tolerances. If these
tolerances are too strict, the generator simply aborts leaving holes inside the domain. Contrariwise, if the tolerances
are enlarged, the generator may succeed in filling the volume at the expense of generating some elements of very
low quality.

In our experience, the tolerances required to generate a 30000-element mesh make the generator to produce at least
two or three elements with zero-degree and 180-degree angles, i.e. no better than the Delaunay-based method.

Other remarkable facts are: (1) Properly programmed frontal schemes are much more expensive in computer time
than Delaunay-based schemes, by a factor of at least twenty. (2) Any minor simplification in the geometrical tests
may cause the self-penetration of the advancing front and the collapse of the algorithm. It must be kept in mind
that, when dealing with hundreds of thousands of elements, whatever may happen will occur.

WHAT TO DO WITH BAD-QUALITY ELEMENTS?

Considering that 3D mesh generators produce elements not suitable for calculation, the question arises of what to
do with them. This has motivated intensive research on mesh-improving techniques. Much experience in
smoothing meshes also comes from the area of deformable domains (free-boundaries, interfaces, etc., in metal
forming or flow problems). In this later case, elements with high initial quality distort as they follow the
movement of the domain's boundary.

Except for interior slivers (Baker [1] has shown how to remove a sliver from a Delaunay mesh inserting one
additional node), bad elements must generally be enhanced modifying the nodal positions. Kennon [11] and
Tezduyar et al (20] (among others) have developed quite effective node-repositioning strategies, based on auxiliary
elastic problems. These strategies are clever generalizations of the spring systems frequently used for 2D meshes
[e.g-,18], but all elastic-like schemes fail to give a correct 3D mesh when concave or high curvature boundaries are
present.

As we have seen, mesh smoothing is crucial for 3D meshes. As a consequence, a new line of research has appeared
under the name of mesh optimization {3,5,6,12,19]. Mesh optimization is a particular kind of smoothing, which
relocates nodes so as to maximize some mesh-quality function, following an optimization procedure over the space
of nodal coordinates. Cabello et al (3], Stamatis&Papailiou (19] and Zhang&Trépanier {23] define the mesh
quality as an average of the qualities of the elements contained in the mesh. This quality is a smooth function of
the nodal positions, and they solve the maximization problem by conjugate-gradient or steepest-descent methods.
Their results are quite good, but only 2D cases are considered and some surprises could appear in 3D. A similar
averaging approach had already been succesfully applied by Kennon&Dulikravich [12] in three dimensions to
structured grids.

In {5,6], Dari&Buscaglia have proposed 10 use, as quality of the mesh, the quality of its worst element, i.e.

Osiobat = m‘;n O«
This choice incorporates & well-known fact: One unacceptable element renders the mesh useless. The problem is
then that of maximizing an objective function of the min type. As min functions are non-differentiable, they used a

quite crude node-by-node algorithm (described later). Their method succeeded in producing good quality grids
using as initial points both frontal and Delaunay 3D meshes, without altering the node-adjacency structures. In this
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way, it was shown that as-generated meshes can be much enhanced by nodal repositioning alone, what is a non-
trivial assertion in three dimensions. Several examples, with meshes of up to 200000 tetrahedral elements, can be
found in [2].

Instead of moving the nodes, it could be possible to improve the quality of a mesh by modifying its node-
adjacency structure. Moreover, one could ask about the best topological structure so that, combined with nodal
relocation, a mesh of optimal quality is obtained. The mesh relaxation algorithm of Frey&Field [8] seems to
answer this question in two dimensions. Some attempts have been performed by Dari&Buscaglia [5], but with
limited success. The correct extension of the Frey&Field algorithm to 3D remains an open question.

A MESH OPTIMIZATION ALGORITHM

We are currently investigating the following algorithm:

L. Determine the element of lowest quality in the mesh, X, . If this quality is already greater than some
acceptance criterion, stop.

2. Find the n-th order neighboring nodes to K, ;. Its zero-order neighbors are the four nodes contained in
Ko+ Its first-order ones are those nodes belonging to elements adjacent to the zero-order neighboring
nodes, and 5o on. Let N, be the number of n-th order neighbors.

Define now, as the cluster C; associated to a node / the set of elements that share this node. The next step is

3. Sweep the N, clusters associated with each neighboring node, modifying the nodal positions one at a

time, according to the local cluster optimization rule, so as to improve the quality of the cluster.
4, Go backto 1.

In this way, we are at each step optimizing only a part of the complete mesh, comprising the worst element and its
n-th order neighbors. Any restriction in the movement of nodes, such as those belonging to exterior or interior.
boundaries, is handled without difficulty during the local optimization of those clusters associated with constrained
nodes. We now concentrate on one fixed vertex, and make explicit our algorithm for local cluster optimization.

The quality of each element is defined as ¥,/ 4}, As the quality of the cluster is the minimum quality of the

elements contained in it, and thus non-differentiable, standard optimization schemes would not work. We are at the
moment using the following (rather crude) one:

We associate to the cluster C two scalar quantities, a primary quality g,,
defined by g, =",}is% Oy (minimum quality of the cluster) and a secondary
one g,, defined as the average quality in C. Both ¢, and g, are continuous
functions of the position x, of the central node / of the cluster. We next

introduce a set of sampling positions. Let x{ be the original position of node
I, then, for every vertex V of the cluster define two sampling points located at
xe=t0x,+(1Fa)x’, with o a small parameter, typically 0.05. Notice
that x? is itself a sampling position. In two dimensions, the set of sampling

points defined in this way would look as in Fig. 1. The local cluster
optimization rule we have implemented is the following:

Figure 1: Sampling positions for local
cluster optimization in 2D.

Local cluster optimization rule: Evaluate g, for all sampling positions, and choose as updated position the
sampling position that maximizes this primary quality. Whenever the maximum value of g, is shared by two

sampling points, select the one with maximum secondary quality 9
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The introduction of the secondary quality g, is necessary because the point where g, is maximum is generally non-
unique, and the algorithm needs a second criterion to avoid spurious iterations among equivalent points.

AN EXAMPLE: MESH GENERATION INSIDE A CUBE

Let us illustrate the previous exposition through an elementary examf)le: A unit cube with homogeneous target
density. We proposed as desired element sizes 1/8 for the first mesh (CUBE1) and 1/16 for the second (CUBE2).
The surface meshes provided by the generator can be seen in Fig. 2. Instead of including lengthy tables, we will
discuss the most striking features of the results.
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Figure 2: Triangulations generated on the surface of a unit cube. Left: CUBE], average edge-length: 1/8, 1104
triangles. Right: CUBE2, average edge-length: 1/16, 4432 triangles.

ion; Both the Delaunay and frontal generators succeeded in generating the meshes. Delaunay ones
will be labeled CUBE1D (770 nodes, 2918 elements) and CUBE2D (5190 nodes, 23488 elements), while those
obtained by the frontal method CUBEIF (723 nodes, 2441 elements) and CUBE2F (4079 nodes, 16665 elements).
The frontal generator took 55 times more computing time than the Delaunay-based one. In these original meshes,
the minimum dihedral angles ranged between zero (CUBE2D) and 2.56 degrees (CUBEIF), while the maximum
one took values between 180 (CUBE2D) and 176.58 (CUBEIF). Also, the ratio of the volume of the largest
element to that of the smallest one, which should have been close to 1.0 because the density was specified as
homogeneous, rose to 51 in mesh CUBE1D, 440 in mesh CUBEIF, practically infinity in mesh CUBE2D, and 239
in mesh CUBE2F. These are clear evidences of what we were referring to when discussing the actual meshes
provided by automatic generators. Although we are speaking of our generators, we know from informal talks with
colleagues that many existing generators would produce in this situation a ratio maximum volume to minimum
volume of at least 80. In [10], Jin&Tanner reported values in the range 15-30.

Optimization: We then went on to optimize the four meshes obtained in the previous step. We tried several orders
of neighborhood, to determine how many nodes around the worst element one should move to attain acceptable
qualities. Typically, after 20 to 40 iterations the scheme converged to a mesh with a minimum dihedral angle of 6
degrees and a maximum one of 165 (we do not include edge-to-edge angles in the discussion because they were
much better than dihedral angles). This is another advantage of the Vi ! b} definition of quality, it puts more
emphasis on angles close to 180 degrees than in angles close to zero. Most impressive was the effect of
optimization on mesh CUBE2D. Its initially singular elements were improved to the point that the dihedral angles
of the optimized mesh ranged between 10.3 and 159.7 degrees. The maximum/minimum volume ratios after
optimization lied between 24 and 300. Turning now to the effect of allowing n-th order neighboring nodes to
move, our results are not conclusive. For some meshes, increasing n from 0 up to 3 resulted in consistently better
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angles. For other ones, this dependence was rather weak, and even a deleterious effect of increasing n beyvond 1 or
2 could be observed. This behavior will be further discussed in the following section.

DISCUSSION

In node-by-node mesh optimization algorithms, like ours, the nodes are moved so as to improve the quality of the
cluster associated to that node. If the objective is to maximize the quality of the worst element of the mesh, it is not
clear where to move those nodes not belonging 10 that element. It is possible (and likely) that, to improve the worst
clement, one should deteriorate some neighboring clusters. But our algorithm will always try to maximize the
cluster's quality, and therefore the best mesh will in many cases not be attained.

To overcome this difficulty, the optimization method must build search directions not consisting of moving just
one point, but instead a certain number of them or, perhaps (as in [3,19]), the whole mesh. Our future research will
follow this direction. We would like to retain the non-differentiability of the mesh quality function, in order to
concentrate in those elements of lowest quality. To keep the computations at a local level, we will not optimize the
whole mesh simultaneously, but instead, as before, some n-th order neighborhood of the worst element. From the
preliminary results reported above, reasonable values for n could be 1 or 2. This leads, at each step, to a non-
differentiable optimization problem in 60-180 variables.

Also important is to amend the node-adjacency structure of the mesh. Several topological operations are possible:
(@) Any edge shared by three tetrahedra can be replaced by a face and vice versa; (b) any node shared by four
elements can be deleted; (c) any octahedron of the mesh can be retriangulated into four tetrahedra, choosing among
three possibilities. The question is how to decide if a topological change is convenient; in other words, which is the
best topological structure of a mesh of tetrahedra? In 2D we know that equilateral triangles fill the space, and thus
one looks for structures in which each node is shared by six elements. Up to now, we know of no formal criterion
to discern if some 3D structure is better or worse than any other.
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