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RESUMEN

This paper presents a method for straightem curved interphases
arising in phase~change problems. The method works on isopara-
metric finite elements, performing a second transformation
which the interphase looks as a straight line. This allows
using the current Gaussian integration technique for squares
to evaluate the integrals over each phase. Several numerical
examples are presented to show the performance of the method.
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IRTRODUCTION

During the latest years very much interest has been devoted
t§ the numerical solution of phase-change problems. This phencmenocn
takes place in many processes of technological interest such as soil
freezing, steel and glass industry, thermal protection of heated devi-
ces, nuclear safety anslysis and many othersl»2, This problem is
characterized by a gecmetric-type nonlinearity due to the moving boun-
daries of the regions where the heat transfer equation must be solved3.
Regarding _t.his fact, many suthors have developed algorithms which track
the position of the moving front. There are a mumber of vorks vhich use
& deforming grid tormlationl"é. In these methods the interphase alwvays
lies on one side of some determined elements. The grid moves to adapt
to the displacements of the interphase, remaining the same elements 1n
the solid and liquid phases. As an alternative to reduce the nusber of
degrees of freedom, O'Neill? discretizes only the boundary of each
phase, using Green functions to eliminate the volume integrals. This
boundary element method is applied to the quasisteady form of the heat
transfer equation (lov Stefan number) in materials vhere the thermal
coefficients are not temperature-dependant. Although tracking methods
are a “"natural” approximation to this problem, there are a pumber of
drawbacks that induce using fixed domain methods. Betwveen them one can
tddress that they need stsrting solutions and they cannot cope with

appearing/disappearing phases and multiple or no-smooth interphases.

Fixed domain methods use veak formulations®»9 and implicitely
cootain the interphase moving condition in the integrated form of the

heat transfer equation. AttheylO uses the enthalpy as the nodal unknown
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and an explicit scheme for the time integration. Once tﬁe enthalpy is
determined for a given time step, he obtains the temperature applying
the inverse enthalpy-temperature relation. Comini et al.ll replace the
effect of the latent heat by an equivalent heat capacity walid in »
narrov range of tewperatures around the melting temperature. In this
wvay, this equivalent heat capacity method removes the discontinuity at
the phase-change front, allowing using the temperature as the main
unknown. However this class of method has the drawback that the time
step used must be small enough to prevent the interphase from advancing
more than one elerent per time step, othervise the algorithm loses part
of the latent heat involved. l‘!eyex'sl2 instead, splits the interphase
into a phase—change region wvithin which the enthalpy varies linearly
with the temperature. But vhen this mushy region moves in-betveen two
nodes, the algorithm does not realize its motion. A way to circumvent
this objection is to use a large regularization parameter so that the
phase-change region contains several elements. Hence the solution is
strongly dependent omn the size of the regularizaton parameter wvhose
proper magnitude is unknown a priori. Rolph et a1.13 and Roose et
11.1" use a fictitious heat source applied to those elements wvhich are
changing phase, until such elements are completely melted. The features
of these algorithes resemble those of the enthalpy-based methods.
Predmond and Blanchardl® integrate the heat transfer equation with re-
spect to time, defining a freezing index as the main unknown. Further-

more they regularize the enthalpy to treat mushy regions.

To avoid the neccessity of an explicit smoothing in the tem-
perature formulation, it has been proposed using discontinuous finite

cle-ent.als. In this way, it is possible to accurately integrate the
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latent heat contribution to the equilibrium equation. When an inter-
phase traverses an elexent, it is split off -and the integrations over
each phase are perfomed separately over en.qh part. The discontinuous
integration concept vas previously used by StevenlT to solve the
Poisson equation in materials vhere the physical properties have & Jump
discontinuity at a specified internal boundary, as in a non-homogeneous
mediua. However in both algorithms of References 16 and 17, the inter-
phase is considered straight, which 1is obviously not true in most prac-

tical cases, as vhen using linear quadrilatersl finite elements.

In this paper, the tvo-dimensional phase—change problem is
analized. The discretization process is achieved via quadrilateral
finite elements. We use the linear iscparametric coordinate transfor-
mation to evaluate the element matrices and a second mapping in those
elements vhere an interphase lays across to obtain a new representation
of the elements in which the interphase looks as a straight line. Thea
the integrals can be accurately calculated using numerical integration
for triangles or quadrilaterals. Finally, the nonlinear system of equa-
tions 1s solved by a modified Newton scheme to improve convergence and
avoid numerical instability of the iterative _schqae. Several numerical
examples are presented to shov the behavior of the method. It is worth
mentioning that this procedure may be straightforvardly applied to
other physical problems where there can be elements wvith an abrupt in-

ternal interphase.

GOVERNING EQUATIONS AND FINITE ELEMENT FORMULATION

The heat conduction process is ruled by the partial differen-

tial equation
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VTXVTOQ- 92 (1)
t

in a domain Q , vith appropriate boundary and initial conditions. In
equation (1) k 1s the thermal conductivity, T the temperature, Q
the internal heat source, p the density, H the specific enthalpy and

t the time.

Por phase-change problems the entalpy has a jump discontimu-
ity st the melting temperature T, , equal to the latent heat content
per unit volume L . Therefore H attains a discontinuity at the free
boundary. The integral weak form®»16 of equation (1) takes into account
this discontiouity and is the basis for a finite element analysislS.
Integrating equation (1) veighted by some functions Ny(X) and applying
an a-methodl9 for the time derivative of the entalpy, ve have

S [ B0 X (T t) ey 47 - [ 2400 E—‘%‘i av +

+ [ Wy(X) Quugy 4V + [ Wy(x) qpygy @8 = O (2)
2 g

with 0 ¢ a € 1 . In equation (2), B 4s the outward-drawn normal to
the boundary surfece,and q is the prescribed heat flux on the portion
LY of the boundary. The subscript n denotes values evaluated at
specific times of the time interval. We shall concentrate here on im-
Plicit methods, more precisely when a = 1 . Equation (2) mey be re-
written in a compact form as

1y+fy-g=0 (3)
vhere f; is the heat conduction contribution to node J, g3 1s the
external flux and i 3 is the nodal enthalpy. Applying Galerkin's
method, that is, using the same weighting functions as shape functions

for the ie-peuture discretization, i.e.
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¥
= ] E((x) ug(t)

i=]l
ve obtain the system of ¥ equations

K W +i(uy) = g, v)
where K is the stiffness matrix, i is the enthalpy vector, § 1s the
force vector and u is .the vector of nodal unknowns uy . Equation (3)
stands for a single equation of the system (4) where we have

VE kYN av (5.1)

Wy Hy av (5.2)

—
-
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G dav s [Lmy By av e[ By qqds (5.3)
o &t g

When the interphase traverses an element, the enthalpy decomes discon-
tipuous inside it and equation (5.2) cannot be adequately integrated

using a numerical technique such as the Gaussian mlels.

Applying the isoparametric truufomtionla to the twvo-phase
element of Figure 1 (a), i.e.
|
x= § N o(E.n) xy
i=1
vhere Ny , 4 = 1,..., are the same linear shape functions used for
the discretization of the temperature and x{ are nodal coordinates,
this element is mapped onto a master vhich in the (£,n) plane looks as
in Figure 1 (b). Then the integrals (5) can be perfomed fn the master,

The nodal enthalpy coaotribution from equation (S.2) reads as

11

vhere J 1s the Jacobisn of the isoparametric transformation.
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FIGURE 1l: Two-phase elements and its isoparametric representation.
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In order to integrate the discontinuity accurately , equation
(6) may be evaluated separately in both regions, frozen and unfrozenm,
of the master, i.e.l6

lily= [ My 8detd 4 dn + [ Ny B det J & dn n
oy 2

vhere the subscripts s and ¢ denote solid and liquid phases and the
superscript = refers to the master element. Considering the functions
Hy and N, defined as in Pigure 2, that 1s, as extensions of the

smooth portions of H , equation (7) may be written in the two follow-

ing alternative ways
11
lily= [ [ By By det J dg an + [ Ny (Hg - By) det J &£ & (8.1)
-1 -1 g .

11
tly = ]ldn,det-’dzdnofllj (Hy - By) det J a5 an  (8.2)
-1 -1 Qg

As the integrands in each of the first right-hand side terms
in equations (8) are smooth and the integration dommin is a square, the
problem is reduced to evaluating the integrals of the difference bet—

veen Hy, and Hy in any of the regions into which the master element
is divided.

THE SPECIAL ELEMENT

Since the solid and liquid regions have arbitrary curved boun
daries, there are no simple numerical integration schemes to evaluate
the second integrals in equation (8). The solution proposed in this
paper is to find & mapping of the (£,n) plane ontc another (¢',n') .
in vhich these regions are transformed into a triangle or a quadrila-

teral, according to vhether the interphase cuts two adjecdat or two
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opposite sides, as shovn in Pigure 3. Once this transformation is ob-
tained (and ray be easily imverted), the problen is solved by inte-
grating in the hatched ares of the elements of Figure 3. A first trial

may be the mapping (£,n) + (£,T) where in each element T iz given Yy
Te Nu +Wuy+K3ug+ My (9)

Figure 4 shows the result of this transformation. It is tri-
vial that under this mapping, the interphase is a straight line T =
constant, parallel to the ¢ axis. Furthermore all the sides of the
quadrilateral remain straight because at §{ orn constant, T is a
linear function of the remaining variable. However a problen arises
vhen T; =T, or/fend T, = T3 because this transformation is not ome
to one but the element is mapped onto a triangle or a line in the (g,T)
plane. This mapping mey be modified to override this drawvback. Let us

note that the temperature may be written as

- T aT 22?7
Tz T+ — £ + — n o+ En
[14 ° n ° Diar\o

vhere T 1s the aritmetic mean of the four nodal temperstures and

W TetT-T -7
OEO k

o L hth-hT (10)
3!\0 Y

32y .13*"1"'2"&

¥ |, |}

the subscript 0 denoting values evaluated at the origin of coor-

dinates. Hereinafter ve shall use a superimposed dash for denoting such

values. Therefore a second trial reads
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FIGURE 3: Two-phase elements. Integration regions.
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FIGURE 4: Transformation of the master element under the mapping (E,n)+ (E,T)
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The nev coordinate system may be written as

T £ i+m:n
= M . € n
v n ]

vhere M is the matrix of the transformatiom

3T 2T
3

M= S
3T AT

n %

As ve shall see later, this transformation solves many of the
problems of the previcus one. However when the temperature varies
linearly within the element giving a straight interphase, it vould be
elegant that this transformation becomes the identity. This may be
reached by writing

' T-7

£ Y

. M

n v

where
T T
.
-1 1 T 1 MT
Ner 12 |27 3T fforll 2
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Hence
?2r
(l c Py . —
. o 2B N (11)
n' n “v’r B2

Equation {11) satisfies the previous requirements. First, for § =
constant equation (11) gives the parametric equation of one side of the
quadrilateral in the (£',n') plane with n as the parameter. But £'
and n' are linear functions of n alone. The same holds for a side
with n = coanstant. Hence the transformation maps quadrilaterals with
sides parallel to the axes (£,n) onto quadrilaterals in the (£',n')
plane. Additionally, vhen the temperature varies linearly within the
element, the second derivative in equation (10) is null and the trans-
formation {(11) becomes the identity. Furthermore multiplying equation
(11) by VT , we can see that every isotherm T = Tp transforms into a

straight line in the (£',n') plane since

& |t 221 -
(VT)T[ ] = (VT)T[ ] + 3: - Ens= Tp-Ts= coostant
n' n

Denoting

T a%r
3 3¢ an

A = A

—_ (12)
T 7
3E E I

Ay = /Ty 2

equation (11) reduces to

MENRNE

We can take as a measure of the deformation of the element
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the coefticiént

T 2, e 2
2, .2, %
R (o)

which is the relation betwveen the curvature and the temperature gra-

dient. The determinant of the jacobian J' of this transformation reads

det F= (1 +An) (L4A6) -AgEhyn= 1LoAn A E (13)

From equation (13) we can see that the determinant of J' is
a linear function of £ and n . Therefore, for the jacoblan to be
positive everyvhere in the quadrilateral, it is neccessary and suf-
ficient that the jacobian be positive in the four corners of the ele-
ment. Thus this condition reads

1adgnth €0

which is equivalent to

1-('A€|+|~||)>O

or applying equation (12)

—_— 2 2 E E
“V‘l‘" > € an (‘3( * 3n|) (k)

Replacing the derivatives by their definition and after some

algebraic manipulations, condition (1k) reads

2 452
lal sl < a2 + a2

2 2
lallazl <af + a2

vhere
8 = TP +T3-T2-Ty

Bme3-m
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b2 T2 -Ty
Pigure 5 shovs the plot of these equations in the 43, 42
plane, being the Jacobian negative inside the area enclosed by the
circles. The square ploted in the same figure is defined by the equa~

tion

Illl *lbgl = |al

vhose interior represents the region vhere, for a given temperature,

there are two isotherms going through the element. This occurs vhen
min (T, T3) > max (T2, T) or max (Ty, T3) < min (Tp, Ty)

Thus taking & tempersture T" such that min (T3, N3) > T" > wax (T2,
T™,) or max (T}, T3) < T" < min (T5, T,) , the isotherm T = T" cuts the
four sides of the quadrilateral as shown in Figure 6. We can see that
the region of negative jacobian almost coincide with the region vhere
the two-phase element has two interphases, but this situation is very
rare in a numerical computation. Hence we can conclude that in a large

number of problems the mapping (11) will behave adequately.

To verify the accuracy of this mapping, ve can set Hy -Hg = 1
in the second integrals of equation (8) and evaluate the area of the
hatched regions shown in Figure 7 for several values of § . In Table 1
is depicted the comparison between a.) the method descrided above to
map the region into a triangle, integrating numerically within the
triangle vith 9 points of Gsuss, b.) the straightline-interphase method
end c¢.) the analytical value given by

3-7 M7

Area = W+ [ 2-
73 + Ty (T3 “Tl)z

(33
T
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PIGURE 6: Sketch of the two phase element with two interphases within,
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FIGURE T: Interphase position at various nodal temperatures.
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It remains to analyse the ease of the invertion of coor-
dipates, that is to go from (§',n') to (é.n) . With some algebraic
manipulations ve can vrite

AMEs(1+ g - E))E-E"=0
Dividing by £2 and solving the qmdracie equation in 1/ , ve find

€= 26 /[{L+Agn’ -A,E")¢

/1+(A€n'-A“£')202(A;lI'*AQE')]

Furthermore, the jacodian of the transformation 1is

aig',n")

=/1+(Ag ntea EnZ a2 (Agnt v Ay EY)
(g ,n)

Thus ve can see that, at any point of Gauss used for the numerical 1in-
tegration, ve need to evaluate only one square root for the coordinate

inversion and the computation of the jacoblan.

THE INCREMENTAL SOLUTION ALGORITHX

The next step is the solution of the nonlinear system (k).

This process may be viewed as finding a root of the residual
r(u) = Ku + i(u) 9= 0 (15)

This is not an easy task due to the step-like behaviour of the residual
in this type of problem. Moreover vhen no special care is devoted to
the solution scheme, the temperature in those nodes associsted with
phase-changing elements may Jjump above or bdelow the melting value
during the iterative process. The explanation of these oscilations is

found in the amount of latent heat involved in each rearrangement of
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the intephase position. Currently in & finite element context, the

search process is achieved in an incremental foram, i.e.

Saug = - t(u}.)

Q- e

where S is an appropriate iteration matrix, usually the jacoblan matrix
of (15) and the superscript J stands for the iteration number. However
the residual in equation (15) is not differentiable and some skill must
be used to obtain an adequate iteration matrix. The main duty of this
matrix is to damp the spuricus oscilations aforementioned. As the
information of t.hé interphase movement is enclosed in the residual vec-
tor, one manner to accomplish this task is to appropriately include
this vector in S . Quasi-Newton methods20 provide a systematic vay to
do this Job. In Reference 16 is developed an algorithm of this type
that makes a diagonal correction of S that has shown to be adequate to
bandle this type %:%ggﬁabnitiu. During the iterative process it is
useful to use underrelaxtion in the first iterations to enhance stabi-
1ity and overrelaxation to improve the convergence rate at the last
ones. The relaxation parameter can be properly determined using a line
search techniquels which determines the size of the increment vhich
vanishes the projection of the residual in the search direction, 1.e.

find o so that

(ug)' rud + o i) = 0 (16)

updating the unknown as

ug’l = u% +0 Aug

Performing exact line searches satisfylng precisely equation (16) is

rather an expensive task. However, numerical experimentation has shown
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that it suffices to satisfy a less restrictive relation of the form
T
(s )" r(u)+ o)
(a w])T rlu)

< €g

vhere the parameter ¢, 1is set to say 0.9.

To stop the iteration ve measure the magnitud of the out-of-
balance of the solution, that is, iteration proceeds until

[ rea ]l

————(ca
” Ku”

vhere cp 1is the required threshold for the normalized residual.

NUMERICAL EXAMPLES

The performance of the formilation above described has been
examined in several numerical problems. In the following we present the
solution for three examples. The first one concerns the solidification
of a simi-infinite region defined by x > 0, y > 0 . The initial tem
perature is 0.3°C and the half plane is frozen by lovering the tempera-
ture on the sides x =0 and y = 0 to -1°C. The thermal properties
are

kg = ky = 1 Keal/m sec °C Peg =. Pcy = 1 Keal/md °C
pL = 2 Kcal/md T, = 0°C
The finite element mesh used is depicted on Figure 8, vhere only a 45°
section bas been discretired. To simulate the infinite half plane,
adiadbatic conditions has been impoged. on the sides AB and BC. The same
holds on the side OA decause of the simmetry of the problem. The one-
hundred element mesh is refined near the origen to reproduce better the

transient condition at t = 0 . The time step used is 0.01 sec. Figures
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FIGURE 10: Temperature distribution for time = 0.08 sec.
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9 and 10 shov the temperature profile along the line x =y as a func-
tion of the distance to the origin R, for two time steps. The numerical
solution is cowparsd with the analytical solution of Budhia and
Krieth?l, Pigure 11 showvs the time evolution of the interphase posi-
tion. The mean CPU time needed for coqnﬁing the residusl vector im the
first time step vas 6.158 sec. This is the time step vhea more elements
change phase. For the same mesh in the linear case (without phase-
change and discontimuous integration) the mean CPU time was 5.825 sec.
For the straight-interphase assumption the mean CPU time vas 5.906 sec.
The curved-interphase method is &% more expensive then the straight-
intephase algorithm and 5.7% than the linear case. Runs were performed
on & VAX 11/780. The additional cost due to the nev formulation 1is
irrelevant.

»

The second example uses & coarser mesh for the same problem.
The mesh depicted oe Pi@xre-lz uses one-hundred equally-spaced elements
to discretize the 90° corner region of the balf plane. The time step
used in this example is 0.02 sec. Pigures 13 and 1h shov the tempera-
ture profile along the 1ine x = Yy for two different time steps. In

Pigure 15 the interphase locus is plotted for t = 0.0L sec.

The third example involves an internal heat source. The tempera-

ture distribution is given by

2 f (x,y,t) £>0

T= (17)

1.5 £ (x,y,t) £<o0

vhere
f= R+025¢t -1

being R the distance measured from the point P = (0.1,0) . The inter-

Phase locus is an arc of circumference at any time. It is represented
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FIGURE 11: Evolution of the front position for model problem one.
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PIGURE 12: Pinite Element mesh for model problem two.
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FIGURE 13: Temperature distribution for time = 0.0k sec.
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FIGURE 15: Interphase location at time = 0.0k sec.
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phase locus is an arc of circumference at any time. It is represented
by the equation
R= 1-0.25¢

and thus its normal is the radial unit vector. The thermal properties

are the same as for the first example.

This temperature distribution 1is achieved Yy using the
internal heat source given by2?
2 (0.25 - il') £>0

Q(x,y,t’
1.5 {0.25 - -}) r<o

and the corresponding boundary conditions arising from equation (17).

Pigure 16 depicts the 272 finite-element mesh used for the
discretization of the regiocn enclosed by the line ABCDEFGOA. On the
vhole boundary the temperature is imposed according to (17). The time
step used is 0.25 sec. Figure 17 plots the intephase position for two
‘time steps. Figure 18 shows the temperature profile at t = 1 sec. for

several lines of coastant y .

CONCLUSIONS

A pev procedure for dealing with curved interphases was pre-
sented. It allows an improved integration of discontimucis functions
vithin the elements which are traversed by such lnterphase;. The proce~
dure was applied to model two-dimensional phase-change problems. The
solution 1is obtalned in terms of temperature, without the current

requirement of anm explicit smoothing of the tempersture-enthalpy rela~
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FIGURE 16: Finite Element Mesh for model problem three.
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FIGURE 17: Interphase location for several time steps

- €91 -



1

Y=0.8
0.7

0.6
05 .
Q.4

TEMPERATURE

- FEM.
—EXACT

FIGURE 18: Temperature distribution for time = 1 sec.

- 991 ~



- 167 -

I slqwl

779£50°0 Z $08v50°0 196°0
¥8980°0 ? S9£.80°0 “9£6°0
L102Z8SE1°0 ? SL6SEL"0 §.8°0
98SISLL D 4 SZISLLO 78°0
z 2 ] 0
&)} (@) (e) s ‘
NOLLTIOS JSVIKRAINT L-'L
TVOLLAIVNY SNILLDIVULS QOHLIN INASRRId T ¢
L+l

\EL A




- 168 -

tion. The algorithm features an accurate integration of the enthalpy
contribution to the residual vector. Purthermore, the convergence cri-

terion is ruled by the norm of this residual vector.

The {iteration process is bandled by & careful strategy to
avoid spurious oscilations and lack of convergence. It combines a
proper modification of the iteration matrix vith an approximate line

search.

This algorithm may be readily implemented in finite element
packages without any major modification of the program. Little addi-
tionsl calculation is required to evaluate the proposed transformation,
only & square root at each Gaussian point is needed to compute the
Jacobian and to invert the coordinate system. The computation of the
integrals in those elements travesed by the interphase does not produce
relevant extra cost. The method bebaves encouragingly in the examples
performed.
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