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Abstract. A general methodology for developing absorbing boundary conditions for general non-linear
hyperbolic advective-diffusive equations with unknown Riemann invariants is presented. In problems
where the Riemann invariants (RI) are known (e.g. the flow in a shallow rectangular channel, the gas
flow equations), the imposition of non-reflective boundary conditions is straightforward. In problems
where Riemann invariants are unknown (e.g. the flow in a non-rectangular channels, the stratified 2D
shallow water flows) it is possible to impose that kind of conditions analyzing the projection of the
Jacobians of advective flux functions onto normal directions to fictitious surfaces or boundaries. The
advantage of the method is that it is very easy to implement in a finite element code and is only based on
computing the advective flux functions (and the their Jacobian projections), then, imposing non-linear
constraints via Lagrange Multipliers or Penalty Methods. The application of the dynamic absorbing
boundary conditions to typical wave propagation problems with unknown Riemann invariants, like non-
linear Saint-Venant system of conservation laws for non-rectangular and non-prismatic 1D channels and
stratified 1D/2D shallow water equations, is presented. Also, the new absorbent/dynamic condition can
handle automatically the change of Jacobians structure when the flow regime changes from subcritical
to supercritical and viceversa, or when recirculating zones are present in regions near fictitious walls.
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1 INTRODUCTION

Special care must be taken when deciding the number and which boundary conditions have
to be imposed at each part of an artificial boundary because in many instances this is a very
difficult task and sometimes these conditions are not clear. For hyperbolic problems the deci-
sion is based on the number of incoming characteristics n+ and the quantities known for each
problem. On one hand, if the number of conditions imposed on the boundary is in excess they
are absorbed through spurious shocks at the boundary. On the other hand, if less conditions are
imposed, then the problem is mathematically ill posed and numerical solutions will explode or
exhibit spurious oscillations. Even if the number of imposed boundary conditions is correct,
this does not guarantee that the boundary conditions are non-reflective.
Dealing with models in infinite or large domains implies the introduction of an artificial bound-
ary distant as far as possible from the region of interest. The simplest choice is to impose a
boundary condition, assuming that the flow far from the region of interest is undisturbed. How-
ever, the boundary condition can be freely chosen so as to give the best solution for a given
position of the boundary. Nevertheless, this position is often too far and the computational cost
in 2D and 3D problems increases rapidly. Boundary conditions that tend to give the solution as
if the domain were infinite are called generally “absorbing” (ABC) or “non reflective” (NRBC).
ABC’s allows to put the artificial boundary closer to the region of interest for a given admis-
sible error. Of course, the advantage of putting the artificial boundary closer to the region of
interest is the reduction in computational cost due to a smaller domain (see Storti et al. (2008)).
However, in some cases, like for instance the solution of the Helmholtz equation on exterior
domains, using absorbing boundary conditions is required since using a non absorbing bound-
ary condition (like Dirichlet or Neumann) may lead to a lack of convergence of the problem,
because these conditions are completely reflective and therefore, wave energy is trapped in the
domain, producing false resonance modes.
There are basically two approaches for the design of ABC’s, non-local and local. Non-local
boundary conditions are usually more accurate than local ones but expensive. In the limit, a
non-local ABC may reproduce the effect of the whole external problem onto the boundary,
i.e., even maintaining a fixed position of the artificial boundary the ABC may give a conver-
gent solution while refining the interior mesh. In general these ABC’s are non-local, i.e., its
discrete operator is a dense matrix (adding extra computational cost compared to local opera-
tors). Non-local boundary conditions exist and are popular for the simpler linear operators, like
potential flow problems and frequency domain analysis of wave problems, like the Helmholtz
equations for acoustics or the Maxwell equations as presented in Givoli and Keller (1990, 1989);
Broeze and Romate (1992); Harari and Hughes (1992); Storti et al. (1997); Hagstrom (1987);
Bonet Chaple et al. (1998). In Parrish and Hu (2009) (and the references there in) a PML (’Per-
fectly Matched Layer’) scheme for the Euler equations is developed and studied.
The discrete operator for local absorbing boundary conditions is usually sparse but has a lower
order accuracy. These kind of ABC’s are popular for more complex non-linear fluid dynamic
problems, like compressible or incompressible, Navier-Stokes equations or the inviscid Euler
equations. An excellent review has been written by Tsynkov (1998). Nycander et al. (2008)
have proposed an absorbent boundary condition for the particular problem of 1D two layers
stratified shallow flows based on the barotropic and baroclinic modes and their characteristic
variables. The absorbent boundary conditions proposed in this paper are based on the true
states of problem variables on each layer and on the analysis of the projection of the Jacobians
of advective flux functions onto normal directions to fictitious surfaces as would be explained
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in next sections.
In order to have an ABC not any n+ conditions must be imposed at the boundary but exactly
those n+ corresponding to the incoming characteristics. This can be determined through an
eigenvalue (λi) decomposition problem of the advective flux Jacobian (A) at the boundary (i.e.,∑

i(λi(A · n̂) < 0)).
In many cases, the number of incoming characteristics may change during the computation.
For instance, in Saint-Venant’s model it is common that the flow goes from subcritical to su-
percritical in certain parts of an outlet (fictitious) boundary. In 1D or 2D model this means
passing from one imposed boundary condition to none. This is illustrated in the typical prob-
lem of a flow passing through a sluice gate (figure 1). The flow upstream of the sluice gate is
subcritical. Then, it accelerates to the transcritical and supercritical state as it passes under the
gate, which serves as sort of “nozzle”. Further downstream the flow shocks back to subcritical
regime because the downstream height is too high to maintain supercritical flow. Depending
on where the artificial outflow boundary is located (i.e., supercritical or subcritical zone), the
number of boundary conditions to be imposed and the structure of the Jacobians associated to
this problem will change. When flow of a compressible gas is considered, the fluid state can
evolute from subsonic to supersonic and the number of incoming and outgoing characteristics
will change too. The change of the number of imposed boundary conditions at a given point of

Figure 1: flow through a sluice gate, flow changes from subcritical to supercritical

the boundary is hard to implement from the computational point of view since it involves the
change of the structure of the Jacobian matrix. The solution proposed here is to impose these
conditions through Lagrange multipliers or penalization techniques. The main objective of this
paper is to discuss numerical aspects related to the use of this techniques and how one can im-
pose absorbing boundary conditions when the problem at hand have no Riemann invariants (in
a mathematical closed form, see section §3.5) in a mathematical closed form using the scheme
presented in Storti et al. (2008) for gasflow equations.
The idea of imposing absorbent/dynamics boundary conditions is based on analyzing the projec-
tion of the Jacobians of advective flux functions onto normal directions to fictitious surfaces or
boundaries. Therefore, working in the characteristic base, the incoming waves can be neglected
at fictitious wall obtaining a non-reflective wall. The advantage of the method is that it is very
easy to implement in a finite element code and is based on imposing non-linear constraints via
Lagrange Multipliers and/or Penalty Methods (see sections §3.7.1 and §3.7.2).
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2 GENERAL ADVECTIVE-DIFFUSIVE SYSTEMS OF EQUATIONS

Consider the advective-diffusive system of equations in conservative form

∂H(U)

∂t
+
∂Fc,j(U)

∂xj

=
∂Fd,j(U,∇U)

∂xj

+ G. (1)

Here U ∈ IRn is the state vector, t is time, Fc,j,Fd,j are the advective and diffusive fluxes
respectively, G is a source term including, for instance, gravity acceleration or external heat
sources, and xj are the spatial coordinates.
The notation is standard, except for the “generic enthalpy function” H(U). The enthalpy func-
tion allows the inclusion of conservative equations in terms of non-conservative variables. Some
well-known hyperbolic advective-diffusive systems of equations studied in this paper may be
cast in this general setting as shown in following sections.

2.1 Shallow water equations

Shallow water equations describe the open flow of fluids over regions whom characteristic
dimensions are much larger than the depth.

Up = [h,u]T ,

U = Uc = [h, hu]T ,

H(U) = U,

Fc,jnj =

[
h(u · n̂)

h(u · n̂) u + 1/2gh
2 I

]
.

(2)

where h is the fluid depth, u the velocity vector, Up,Uc the primitive and conservative variables,
g the gravity acceleration. We assume that the height of the bottom with respect to a fixed
datum is constant. If this is not so, additional terms must be included in the source term G, but
this is irrelevant for the absorbing boundary condition issue. If the channel bed has a variable
topography the non-conservative form of shallow water equations must be used.

2.2 Open channel flow

Flow in a channel can be cast in advective form as follows

Up = [h, u]T ,

U = Uc = [A,Q]T ,

H(U) = U,

F =

[
Q

Q2/A+ F

]
.

(3)

where h and u are water depth and velocity (as in the shallow water equations). A(h) is the
section of the channel occupied by water for a given water height h. It then defines the geometry
of the channel. For instance

• Rectangular channels: A(h) = wh, w=width.
• Triangular channels: A(h) = 2h2 tan θ/2; with θ=angle opening.

R.R. PAZ, M.A. STORTI, L. GARELLI1596

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



• Circular channel:

A(h) =

∫ h

h′=0

√
2Rh− h2 dh′

= θR2 − w(h)(R− h)/2

(4)

where R is the radius of the channel, w(h) = 2
√

2Rh− h2 is the waterline for a given
water height and θ = atan[w/(2(R− h))] is the angular aperture.

Q = Au is the water flow rate. F (h) is a function defined by

F (h) =

∫ h

h′=0

A(h′) dh′. (5)

Again, for the sake of simplicity, we restrict to the case of constant channel section an channel
depth. For more general situations, other terms can be included in the source and diffusive
terms, but they are not needed for the discussion of absorbing boundary conditions. For rectan-
gular channels the equations reduce to those for one dimensional shallow water equations.
Channel flow is very interesting since it is in fact a family of different 1D hyperbolic systems
depending on the area function A(h). Riemann invariants are only known for rectangular and
triangular channel shapes (see section §3.5).

2.3 Stratified shallow water flows

Another physical model where Riemann invariants have not a mathematical closed form is
the flow of a multi-layer fluid in channels.
This kind of physical model exists for instance when flow takes place on a mountainous terrain
over plain areas or dense distribution of torrents combined with heavy rainfall (see Chen and
Peng (2006)). The numerical model describes multi-layer shallow flows in which the super-
posed layers differ in density, velocity in a two-dimensional domain. For the case of two layers
and traction free at top and bottom surfaces, the stratified shallow water equations are (mass
and momentum conservation equations)

∂h1

∂t
+

∂

∂x
(h1u1) +

∂

∂y
(h1v1) = 0,

∂h2

∂t
+

∂

∂x
(h2u2) +

∂

∂y
(h2v2) = 0,

∂

∂t
(h1u1) +

∂

∂x

(
h1(u1)

2 +
1

2
gh2

1

)
+

∂

∂y
(h1u1v1) +

+ gh1
∂

∂x

(
z0 +

ρ2

ρ1

h2

)
= 0,

∂

∂t
(h1v1) +

∂

∂x
(h1u1v1) +

∂

∂y

(
h1(v1)

2 +
1

2
gh2

1

)
+

+ gh1
∂

∂y

(
z0 +

ρ2

ρ1

h2

)
= 0,

∂

∂t
(h2u2) +

∂

∂x

(
h2(u2)

2 +
1

2
gh2

2

)
+

∂

∂y
(h2u2v2) + gh2

∂

∂x
(z0 + h1) = 0,

∂

∂t
(h2v2) +

∂

∂x
(h2u2v2) +

∂

∂y

(
h2(v2)

2 +
1

2
gh2

2

)
+ gh2

∂

∂y
(z0 + h1) = 0,

(6)
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where ρ1 and ρ2 are the constant densities of bottom and top layers respectively. U1 =
{h1, h1u1}T is the state variables for the bottom layer and U2 = {h2, h2u2}T for the top layer.
h1(x, t) and h2(x, t) are the thickness of each layer while the height of the bottom is h0(x, t).
The vertical velocity is averaged and thereafter eliminated.

Equations (6) cannot be written in conservation form. The classical hydrostatic pressure as-
sumption is adopted throughout all layers and along the interfaces.
In the general case of n layers and 2D model, the system of equations has 3n waves that
propagate inside the domain. In the particular case of the two-layers shallow water equations
(eqs. (6)), six waves propagate upstream and downstream at speeds λi, i : 1, .., 6 in both x and
y directions.

It could happen that, depending on the densities ratio ρ2/ρ1, the system (6) becomes non-
hyperbolic. In such cases the proposed method is not suitable. Thus, the problems considered
in this work are restricted to the hyperbolic region of equations (6).

2.4 Finite element method (FEM)

The discretization of physical models described above is made by means of the Finite El-
ement Petrov-Galerkin Method using the SUPG (Streamline Upwind Petrov-Galerkin) stabi-
lization (Tezduyar and Hughes (1983); Hughes and Tezduyar (1984)) and the shock capturing
operator (Tezduyar (2004)), which is specially adapted for each flux function of physical models
used in this work. The time integration adopted is the trapezoidal rule with α = 1.

3 ABSORBING BOUNDARY CONDITIONS

For steady simulations using time-marching algorithms, it can be shown that the error going
towards the steady state propagates like waves, so that absorbing boundary conditions help to
eliminate the error from the computational domain. In fact, it can be shown that for strongly ad-
vective problems, absorption at the boundaries is usually the main mechanism of error reduction
(the other mechanism is physical or numerical dissipation in the interior of the computational
domain). It has been shown that in such cases the rate of convergence can be directly related
to the “transparency” of the boundary condition (Baumann et al. (1992)). In general, absorbing
boundary conditions are based on an analysis of the characteristic waves. A key point is to
determine which of them are incoming and which are outgoing. Absorbing boundary condi-
tions exist from the simplest first order ones based on a plane wave analysis at a certain smooth
portion of the boundary (as will be described below), to the more complex ones that tend to
match a full analytic solution of the problem in the external region with that obtained in the
internal region. In this paper the usage of absorbing boundary conditions is accomplished in
situations where the conditions at the boundary change, so as the number of incoming and out-
going characteristic waves varies during the temporal evolution of the problem, or even when
the conditions at the boundary are not well known a priori.

3.1 Advective systems in 1D

Let us consider a pure advective system of equations in 1D, i.e., Fd,j ≡ 0

∂H(U)

∂t
+
∂Fc,x(U)

∂x
= 0, in [0, L]. (7)
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If the system is “linear”, i.e., Fc,x(U) = AU, H(U) = CU (A and C do not depend on U), a
first order linear system is obtained

C
∂U

∂t
+ A

∂U

∂x
= 0. (8)

The system is “hyperbolic” if C is invertible, C−1A is diagonalizable with real eigenvalues. If
this is the case, it is possible to make the following eigenvalue decomposition for C−1A

C−1A = SΛS−1, (9)

where S is real and invertible and Λ is real and diagonal. If a new set of variables is defined
V = S−1U, then equation (8) becomes

∂V

∂t
+ Λ

∂V

∂x
= 0. (10)

Now, the system decouple and each equation is a linear scalar advection equation
∂vk

∂t
+ λk

∂vk

∂x
= 0, (no summation over k). (11)

vk are the “characteristic components” and λk are the “characteristic velocities” of propagation.

3.2 Linear 1D absorbing boundary conditions

Assuming that λk 6= 0, the absorbing boundary conditions, depending on the sign of λk, are

if λk > 0: vk(0) = v̄k0; no boundary condition at x = L

if λk < 0: vk(L) = v̄kL; no boundary condition at x = 0
(12)

This can be put in the follow compact form as

Π+
V (V − V̄0) = 0; at x = 0

Π−V (V − V̄L) = 0; at x = L
(13)

where Π±V are the projection matrices onto the right/left-going characteristic modes in the V
basis,

Π+
V,jk =

{
1; if j = k and λk > 0

0; otherwise,

Π+ + Π− = I.

(14)

It can be easily shown that they are effectively projection matrices, i.e., Π±Π± = Π± and
Π+Π− = 0. Coming back to the boundary condition at x = L in the U basis, it can be written

Π−V S−1(U− ŪL) = 0 (15)

or, multiplying by S at the left

Π±U (U− Ū0,L) = 0, at x = 0, L, (16)

where
Π±U = S Π±V S−1, (17)

are the projection matrices in the U basis. These conditions are completely absorbing for 1D
linear advection system of equations (8).
The rank of Π+ is equal to the number n+ of positive eigenvalues, i.e., the number of right-going
waves. Recall that the right-going waves are incoming at the x = 0 boundary and outgoing at the
x = L boundary. Conversely, the rank of Π− is equal to the number n− of negative eigenvalues,
i.e., the number of left-going waves (incoming at x = L and outgoing at the x = 0 boundary).
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3.3 Multidimensional problems

For multidimensional problems a simplified 1D analysis can be done in the normal direction
to the local boundary and with the Jacobian of the advective flux function A (equation (9))
replaced with its projection onto the exterior normal n̂, as follows

Π−n (U− Ū) = 0,

Π−n = Sn Π−V n S−1
n ,

(Π−V n)jk =

{
1; if j = k and λj < 0,

0; otherwise.

C−1An = SnΛnS−1
n , (Λn diagonal),

An = Alnl.

(18)

These conditions are perfectly absorbing for perturbations reaching the boundary normal to the
surface. For perturbations not impinging normally, the condition is partially absorbing, with a
reflection coefficient that increases from 0 at normal incidence to 1 for tangential incidence.

3.4 Absorbing boundary conditions for non-linear problems

If the problem is non-linear, as the gas dynamics or shallow water equations, then the flux
Jacobian A is a function of the state of the fluid, and then the same happens for the projection
matrices Π±. If it is assumed that the flow is composed of small perturbations around a state of
reference Uref , then the projection matrix at the state Uref can be computed

Π(Uref)
−
n (U−Uref) = 0. (19)

However, as long as the fluid state departs from the reference value the condition becomes less
absorbing.

3.5 Riemann invariants based absorbing boundary conditions

Suppose that for a small interval t ≤ t′ ≤ t + ∆t the state U(t) is taken as the reference
state, then, during this interval Π−(U(t)) is taken as the projection operator onto the incoming
characteristics and the absorbing boundary conditions are

Π−(U(t)) (U(t′)−U(t)) = 0. (20)

But regarding the equivalent expression (15) it can be written as

lj(U) · dU = 0, if λj < 0, (21)

where lj is the j-th left eigenvalue of the normal flux Jacobian. Note that, as lj is a function of
U, this is a differential form on the variable U. If it happens that this is an exact differential,
i.e.,

µ(U) lj(U) · dU = dwj(U), (22)

for some non-linear function wj and an “integration factor” µ(U), then it can be imposed

wj(U) = wj(Uref), (for wj an incoming char.) (23)

non-linear regime. The functions wj are often referred as “Riemann invariants” (RI) for the flux
function. The main problem of imposing a condition in this way is that RI are only known for
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a few set of hyperbolic systems.
For 1D channel flow, Riemann invariants are known for a few channel shapes. For general
channel sections they are not known and in addition there is not a general numerical method for
computing them. They could be computed by numerical integration of equation (22) along a
path in state space, but the integration factor is not known. In addition, a mathematical closed
form for the RI of the stratified shallow water model is not known.
For the 2D shallow water equations, the Riemann invariants are well known (see works by Sanders
(2001); Johnsen and Lynch (1994)) and

w± = u · n̂± 2
√
gh, (24)

and for channel flow they are known only for rectangular and triangular channel shapes. For the
triangular case, RI are

w± = u · n̂± 4
√
gh. (25)

For the gas dynamics equations, the well known Riemann invariants are invariant only under
isentropic conditions, so that they are not truly invariant. They are

w± = u± 2c

γ − 1
. (26)

3.6 Absorbing boundary conditions based on last state

While integrating the discrete equations in time, the state of the fluid in the previous state
can be taken as the reference state

Π−(Un) (Un+1 −Un) = 0. (27)

since in the limit of ∆t → 0 it should be Un+1 ≈ Un. In fact, (27) is equivalent, for ∆t → 0
to (21), so that if Riemann invariants exist, then this scheme preserves them in the limit ∆t→ 0
and ∆x → 0. Hereafter, the proposed strategy is called ’ULSAR’ (for Use Last State As
Reference).
However, if this scheme is used in the whole boundary, then the flow in the domain is only
determined by the initial condition, and it can drift in time due to numerical errors. Also, in a
steady state of a certain regime, there is no way to guarantee that the regime will be obtained.
For instance, to obtain the steady flow around an aerodynamic profile at a certain Mach number,
the initial state with a non perturbed constant flow at that condition can be stated, but, it cannot
be assured that the final steady flow will preserve that Mach number. In practice, a mix of the
strategies are often used, with linear boundary conditions imposed at inlet regions and absorbing
boundary conditions based on last state on the outlet regions. For instance a fixed Uref can be
used at inlet, while ULSAR may be used at outlet wall.

3.7 Imposing non-linear absorbing boundary conditions

In this section, the integration of the absorbing boundary conditions in a numerical code is
discussed. For linear systems, the discrete version of equation (8) is of the form

C
Un+1

0 −Un
0

∆t
+ (A−D/h)

Un+1
1 −Un+1

0

h
= 0,

C
Un+1

k −Un
k

∆t
+ A

Un+1
k+1 −Un+1

k−1

2h
−D

Un+1
k+1 − 2Un+1

k + Un+1
k−1

h2
= 0, k ≥ 1

(28)
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where Un
k is the state at grid point k at time tn = n∆t. It is assumed a constant mesh step size

of h, i.e., xk = kh, and the boundary located at the mesh node x0 = 0. Several simplifications
were assumed here, no source term, general upwind scheme (i.e., the term that includes the
positive definite matrix D), and a simple discretization based on centered finite differences was
used. Alternatively, it can be thought as a stabilized FEM discretization with mass lumping.
Also, backward Euler differencing in time is used.

We emphasize that the aim of this section is to show, in a simple manner, how the imposition
of ULSAR type boundary conditions works. The numerical examples presented in section §4
consider the use of the Finite Element Petrov-Galerkin Method with SUPG stabilization (Tezdu-
yar and Hughes (1983); Hughes and Tezduyar (1984)) and shock capturing operator (Tezduyar
(2004)), which are specially adapted for each flux function of physical models involved in these
problems.

If the projector onto incoming waves Π+
U has rank n+ = n, then Π+

U = I and the absorbing
boundary condition reduces to U = Uref (being Uref a given value or Un

0 for ULSAR). This
happens for instance in a supercritical inlet for free surface fluid dynamics or an inlet boundary
for linear advection. In this case it is replaced the balance equation for the boundary node (the
first equation in (28)) with the absorbing condition U = Uref , keeping the balance between
equations and unknowns.
Conversely, if the projector onto incoming waves Π+

U has rank n+ = 0, then Π+
U = 0 and

the absorbing boundary condition reduces to not imposing anything. This happens for instance
in a supercritical outlet in shallow water flows or an outlet boundary for linear advection. In
this case the absorbing condition U = Uref is discarded. Again, the number of equations and
unknowns is maintained.
The case is more complicated when 0 < n+ < n. It cannot be added the absorbing condition
(either (16), (23) or (27)), because the boundary balance equation cannot be discarded or main-
tained.
There are at least two strategies for imposing these non-linear boundary conditions. One pos-
sibility is to replace the boundary balance equation for the outgoing waves with a null first
derivative condition. Then a discrete version can be generated with finite difference approx-
imations. (This requires, however, a structured mesh at least near the boundary). The other
possibility is to resort to the use of Lagrange multipliers or penalization techniques. One ad-
vantage of using Lagrange multipliers or penalization is that not only the boundary conditions
coefficients can easily be changed for non-linear problems, but also the number of imposed
boundary conditions. This is important for problems where the number of incoming character-
istics can not be easily determined a priori, or for problems where the flow regime is changing
from subcritical to supercritical, or the flow reverts. In the rest of this section the second strat-
egy will be described in detail.
In the base of the characteristic variables V, (28) can be written as

Vn+1
0 −Vn

0

∆t
+ Λ

Vn+1
1 −Vn+1

0

h
= 0,

Vn+1
k −Vn

k

∆t
+ Λ

Vn+1
k+1 −Vn+1

k−1

2h
= 0, k ≥ 1,

(29)

where the stabilization term has been dropped momentarily.
For the linear absorbing boundary conditions (16) it should be imposed

Π+
V (Vref) (Vn

0 −Vref) = 0, (30)
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while discarding the equations corresponding to the incoming waves in the first rows of (29).
Here Uref/Vref is the state about which the linearization is done.

3.7.1 Using Lagrange multipliers

This can be done, via Lagrange multipliers in the following way

Π+
V (Vref) (Vn

0 −Vref) + Π−V (Vref) Vlm = 0,

Vn+1
0 −Vn

0

∆t
+ Λ

Vn+1
1 −Vn+1

0

h
+ Π+

V (Vref) Vlm = 0,

Vn+1
k −Vn

k

∆t
+ Λ

Vn+1
k+1 −Vn+1

k−1

2h
= 0, k ≥ 1,

(31)

where Vlm are the Lagrange multipliers for the imposition of the new conditions. On one hand,
if j is an incoming wave (λj ≥ 0), then the equation is of the form

vn
j0 − vref0 = 0,

vn+1
j0 − vn

j0

∆t
+ λj

vn+1
j1 − vn+1

j0

h
+ vj,lm = 0,

vn+1
jk − vn

jk

∆t
+ λj

vn+1
j,k+1 − v

n+1
j,k−1

2h
= 0, k ≥ 1.

(32)

Note that, due to the vj,lm Lagrange multiplier, it can be solved for the vjk values from the
first and last rows, while the value of the multiplier vj,lm “adjusts” itself in order to satisfy the
equations in the second row.
On the other hand, for the outgoing waves (λj < 0), the equations are

vj,lm = 0,

vn+1
j0 − vn

j0

∆t
+ λj

vn+1
j1 − vn+1

j0

h
= 0,

vn+1
jk − vn

jk

∆t
+ λj

vn+1
j,k+1 − v

n+1
j,k−1

2h
= 0, k ≥ 1.

(33)

So that the solution coincides with the unmodified original FEM equation, and the Lagrange
multiplier is vj,lm = 0.
Coming back to the U basis and reinserting the stabilization term, it can be written

Π+
U(Uref) (Un

0 −Uref) + Π−U(Uref) Ulm = 0,

C
Un+1

0 −Un
0

∆t
+ (A−D/h)

Un+1
1 −Un+1

0

h
+ CΠ+

U(Uref) Ulm = 0,

C
Un+1

k −Un
k

∆t
+ A

Un+1
k+1 −Un+1

k−1

2h
−D

Un+1
k+1 − 2Un+1

k + Un+1
k−1

h2
= 0, k ≥ 1.

(34)

3.7.2 Using penalization

The corresponding formulas for penalization can be obtained by adding a diagonal term
scaled by a small enough regularization parameter ε to the first equation in (34)

−εUlm + Π+
U (Un

0 −Uref) + Π−U Ulm = 0,

C
Un+1

0 −Un
0

∆t
+ (A−D/h)

Un+1
1 −Un+1

0

h
+ Π+

U Ulm = 0;
(35)
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where, for the moment, the dependence of the projectors on Uref is dropped. Eliminating Ulm

from the first and second rows it is obtained

C
Un+1

0 −Un
0

∆t
+ (A−D/h)

Un+1
1 −Un+1

0

h
+ Π+

U (Π−U + εI)−1 Π+
U(Un

0 −Uref) = 0. (36)

Now, using projection algebra it can be shown that

(Π−U + εI)−1 = (
1

ε
Π+

U +
1

1 + ε
Π−U) (37)

so that the last term in (36) reduces to Π+
U(U0 −Uref) and the whole equation is

C
Un+1

0 −Un
0

∆t
+ (A−D/h)

Un+1
1 −Un+1

0

h
+

1

ε
CΠ+

U(Un
0 −Uref) = 0. (38)

Here 1/ε can be taken as a large penalization factor.

4 NUMERICAL EXPERIMENTS

Several numerical and theoretical aspects of absorbent boundary conditions are studied in
this section. Most of them arising in typical problems in hydrology and hydraulic areas where
hyperbolic PDE’s govern their behavior. The experiments range from 1D Saint-Venant models
for different channel shapes, to 1D and 2D stratified shallow flows and problems with regime
change and back-flow at outlet fictitious boundaries.

4.1 1D shallow water equations

As explained in precedent sections, RI for 1D Saint-Venant equations are known only for
rectangular and triangular channel shapes. So, classical ABC could be used in order to avoid
wave reflections at fictitious walls. The next section is devoted to evaluate the performance
of ULSAR ABC’s proposed here in problems where channel shapes differ from those with
known Riemann invariants. Also, the performance of ULSAR conditions is compared with
those ABC’s based on Riemann characteristics in the full nonlinear range in the case of the
shallow-water flow in a rectangular channel. It is shown that both (ULSAR and RI based B.C.’s)
local boundary conditions have similar “transparency” properties.

4.1.1 Circular cross section channel

Consider a 1D Saint-Venant flow in a very long horizontal and circular section channel with
radius Rchann = 1 m. All variables and parameters are dimensionless by selecting Rchann and
g = 1 m/s2 as reference values for length and time scales. Fictitious walls are introduced at
x = 0 and x = Lx = 20. The fluid state is initialized having a strong perturbation in the
free surface elevation h which is function of the coordinate x and describing a Gaussian curve
triggering full non-linear effects. The perturbation is

h(x, t = 0) = h0 +
A√
2π

exp−0.5(x−µσ )
2

with h0 = 1, A = 2, µ = Lx/2 and σ = 0.04Lx. The initial velocity u is constant in the
whole domain at t = 0, i.e, u(x, t = 0) = 0.5. For t > 0 the initial perturbation breaks and
two resultant waves (that are not symmetrical due to the initial imposed velocity) move toward
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the fictitious walls. The non-dimensional number that governs this kind of flow is the Froude
number (Fr = |u|/

√
gh) which is subcritical in this case. The evolution of the perturbation is

simulated using Nx = 400 equal-spaced finite elements (∆x = Lx/Nx = 0.05) with SUPG
stabilization and trapezoidal temporal scheme with ∆t = 0.05. Absorbing boundary conditions
based on the ULSAR strategy are applied at both ends x = 0, L. The set of non-absorbent
”classical Dirichlet B.C.” are u(x = 0, t) = 0.5 and h(x = Lx, t) = 1.
In Figure (2) the time evolution of the free surface elevation is shown for both type of boundary
conditions. Note that the transparency of ULSAR B.C.’s is very high. Impinging waves are
completely absorbed as they pass through walls despite the full non-linear character of the flow.

Please, note that the results using the classical Dirichlet conditions shown in figures 2 to 4
(sections§4.1.1 and §4.1.2) are presented in order to show the global behavior of ULSAR condi-
tions where Riemann invariants are unknowns. A test comparing the transparency of ULSAR’s
B.C. to Riemann Invariants based B.C. is further introduced in section §4.2 for the case of the
shallow water flow in a rectangular channel (i.e, with known RI). Similar results are obtained
with other channel sections like, trapezoidal, parabolic or more general sections derived from
the basic ones.

4.1.2 Generic shape channel

This test is similar to the previous one except that the channel section shape is constructed
using the most basic shapes or generated by a polygonal curve, for instance. Then, consider the
1D Saint-Venant flow in a channel with cross section as shown in Figure (3). Same parameters,
initial and boundary conditions adopted for the circular channel case are used here. Geometrical
dimensions are: B1 = 4 m, B2 = 6 m and Z1 = 2 m. All variables and parameters are
dimensionless by selecting B1 and g = 1 m/s2 as reference values for length and time scales.
Figure (4) show the time evolution of the free surface height using ULSAR B.C.’s and Classical
Dirichlet ones. Here, the impinging waves are completely absorbed at walls in the same fashion
as in previous example.

4.2 Rectangular cross section channel: comparison between ULSAR and Riemann in-
variants based ABC

The key point of this test is to show experimentally that the ULSAR conditions are equiva-
lent to the Riemann invariants based conditions. For this purpose, an 1D Saint-Venant flow in
a rectangular channel of 1 m width is considered. Physical and numerical parameters, and the
initial and boundary conditions are the same as in previous cases, testing the both conditions in
the linear and non-linear ranges.
All variables and parameters are dimensionless by selecting B = 1 (the channel width) and
g = 1 m/s2.
Figure (5) show the behavior of the free surface and the transparency of both approaches. In
Figures (6) and (7) the differences, in both variables u(x = 0, t) and h(x = 0, t) as the simula-
tion proceed are shown. It is clear from figures that differences are several orders of magnitude
less than the values of variables. But perhaps a better way to evaluate the performance of UL-
SAR B.C.’s, compared to Riemann invariants based conditions, is computing the norm L2 of the
spatial derivative of u and h as a function of time, i.e., ||du/dx||2 and ||dh/dx||2. Clearly, this is
a measure of the error between the actual fluid state to the steady non-perturbed solution once
the waves leave the domain. The error is shown in Figures (8) and (9) putting in evidence that
ULSAR conditions are equivalent to RI based one including the linear and non-linear ranges.
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Figure 2: Classical and ULSAR B.C.’s comparison for 1D-SW flow in a circular section channel.
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Figure 3: Cross section definitions

4.3 1D stratified shallow water equations

Let us focus this test on the one-dimensional version of equations (6). This case is similar to
the one-layer examples presented above but considering the flow of two immiscible layers over
a rectangular unbounded channel. All variables and parameters are dimensionless by selecting
B = 1 m (the channel width) and g = 1 m/s2 as reference values for length and time scales.
Absorbing walls are introduced at x = 0 and x = Lx = 20. The state is initialized with a strong
perturbation in the variable h(x, t = 0) of the top layer (i.e., h2(x, t = 0)) describing a centered
curve like equation (4.1.1) with h0 = 0.5, A = 2.5, µ = Lx/2 and σ = 0.04Lx. The bottom
layer is initialized with a constant height along the channel such that h1 = 1. Both layers have an
initially low velocity of (u1(x, t = 0) = u2(x, t = 0) = 0.15). Then, the initial perturbation (in
the h variable) is decomposed in two non-symmetrical waves travelling in opposite directions
and interacting immediately with the bottom layer as shown in Figure (10). There are four
characteristic waves in this 1D case. Based on the non-perturbed state two characteristic waves
are right-going and two are left-going. The solution with classical B.C. are also plotted in the
sequence of Figure (10). ρ1/ρ2 = 2 is used. As shown in figure, high transparency properties
of ULSAR ABC’s are achieved too for this problem.

4.4 2D stratified shallow water equations: Dam-break problem

The 2D version of the two-layer shallow water equations is used to simulate the dam-break
phenomenon. All variables and parameters are dimensionless by selecting h1(x, t = 0) = 1 m
and g = 1 m/s2. The computational region is a 20 m by 20 m (Lx = Ly = 20) squared
dam channel as shown in Figure 11 with two walls located at the middle of the channel. The
separation gap of the walls is 10 m. The main channel is horizontal. A mesh of triangles is
used and the average element size is 0.2. The initial condition is such that in both layers the
fluid is at rest, so, u1(x, y, t = 0) = u2(x, y, t = 0) = v1(x, y, t = 0) = v2(x, y, t = 0) = 0
and a strong discontinuity in both layers thickness located at the levee station is introduced,
i.e., h1(x, y > Ly/2, t = 0) = h2(x, y > Ly/2, t = 0) = 1, and h1(x, y ≤ Ly/2, t = 0) =
h2(x, y ≤ Ly/2, t = 0) = 0.75. The density ratio is ρ1/ρ2 = 4 and g = 1. Friction terms are
neglected in this problem and this assumption has no effect when evaluating the transparency
of the artificial walls. The time step adopted is ∆t = 0.025 s. ULSAR absorbent conditions are
used in all walls excepting the levee walls where a non-slip condition is imposed (in both layers).
Regarding the geometry of the domain and the expansion waves generated at levee, the quality
of ULSAR conditions is evaluated for impinging waves that are not only normals to walls but
also to waves inciding with angles that can vary from 0 to 90 degrees (i.e., there are waves
not inciding normal to lateral walls and corners of the channel where an ABC is introduced).
As stated in section §2.3 there are six characteristic waves. It is verified that during the whole
simulation, at the outlet (left) wall four characteristic waves are outgoing and two are incoming.
The sequence in Figure (11) illustrates the computational results for each layer thickness and
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Figure 4: Classical and ULSAR B.C.’s comparison for 1D-SW flow in a channel with a polygonal cross section.
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Figure 5: ULSAR and Riemann invariants based ABC’s comparison for 1D shallow water flow in a rectangular
channel.
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Figure 6: Differences (velocity) between ULSAR and Riemann invariants based ABC’s at left fictitious boundary:
the evolution in time for 1D shallow water flow in a rectangular channel.

Figure 7: Differences (free surf. height) between ULSAR and Riemann invariants based ABC’s at left fictitious
boundary: the evolution in time for 1D shallow water flow in a rectangular channel.
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Figure 8: ||du/dx||2 vs. time for ULSAR and Riemann invariants based ABC’s.

Figure 9: ||dh/dx||2 vs. time for ULSAR and Riemann invariants based ABC’s.
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Figure 10: Classical and ULSAR B.C.’s comparison for 1D-stratified shallow water flow in a rectangular channel.
red: bottom layer, blue: top layer.
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the efficiency of proposed conditions. As shown in figure, ULSAR conditions behave quite
good as fictitious boundaries including the effect of the angle of incidence of arriving waves.

4.5 Absorbent B.C. as dynamic B.C: problems with regime change

The modeling of the free surface fluid flow problem with dynamically regime change is a
challenge from several points of view. One of these points is the imposition of boundary condi-
tions that at an outlet wall must be non-reflecting when the unbounded domain is truncated (to
save computational resources for instance). Moreover, in such case, the needed conditions at the
outlet wall would change from subcritical to supercritical ones (and viceversa) as a shock wave
(or a strong discontinuity or a hydraulic jump) appears and propagates toward the boundary.
So, the condition must be capable of handling the dynamical change of the Jacobians matrix
profile. During the flow computation inside the channel the number of incoming/outgoing char-
acteristics, and therefore the number of Dirichlet conditions to be imposed, will change. Having
a boundary condition that can automatically adapt itself to this change is essentially useful in
such a problem. In addition, the computational domain is limited to a zone of interest and there-
fore the CPU time and used memory are drastically reduced. As explained above, imposing
absorbent/dynamics boundary conditions is based on analyzing the projection of the Jacobians
of advective flux functions onto normal directions to fictitious surfaces. So, when working in
the characteristic base, the incoming waves are fixed to zero (vk = 0) at fictitious walls obtain-
ing a non-reflective wall. As shown in section §3.7.1, the method has an extra advantage that is
very easy to implement based on imposing non-linear constraints.
Let us consider the 2D “subcritical to supercritical” shallow water flow on a channel (Lx = 40 m
long, Ly = 20 m width) with variable bed topography. All variables and parameters are di-
mensionless by selecting h(x, y, t = 0) = 1 m and g = 1 m/s2 as reference values for
length and time scales. The perturbation introduced on the bed is a parabolic bump located
at (x, y) = (10, 10), with height tbump = 0.5 and diameter Dbump = 12. At lateral wall (y = 0
and y = 20) a slip condition is used. Initial state, shown in Figure (12), is obtained from a
steady solution of a simulation at low subcritical conditions ((u, v, h) = (0.5, 0, 1) at left inlet
wall and ULSAR B.C.’s at right outlet wall). Also, at time t = 0 the state at the left boundary
wall is raised from steady conditions to a supercritical state with (u, v, h) = (2.4, 0, 3.1). Con-
sequently, a strong hydraulic jump is generated at left wall which travels downstream with ve-
locity Vjump = (3, 0). The discontinuity interacts with the bump and is finally absorbed at right
boundary leaving a steady supercritical flow in the whole domain. So, the fluid flow evolves
from subcritical to supercritical changing automatically and dynamically the flow conditions
upstream and downstream as explained in previous chapters. In the sequence of Figure (13)
it is shown how ULSAR conditions adapt automatically to give a well-posed dynamic and ab-
sorbent condition at artificial walls. The steady supercritical water level (as seen from a fixed
reference) is shown in Figure (14).

4.6 Absorbent B.C. as dynamic B.C: 2D shallow water equations with back-flow at bound-
aries

Finally, another interesting aspect of the absorbent/dynamics conditions based on the last
state is pointed out in this test where a back-flow bucket is originated at an outlet bound-
ary (see Kobayashi et al. (1993)). Regarding that the number and the set of Dirichlet conditions
to be imposed depend on that the wall is an outlet or an inlet, and that the domain may have
a complicated geometry (e.g., levees, derivation wall, sluice gates, etc.), it could happen that
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Figure 11: 2-layer dam break with ULSAR B.C.
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Figure 12: Initial State: free surface and Froude initial conditions.

meanwhile the correct set of B.C. at an outlet has been imposed, some emitted vortices can
reach the outlet wall and change it to an inlet wall. If classical conditions for the outlet are
maintained, the problem could become ill-posed and the solution misbehaving. Figures (15)
and (16) show how ULSAR B.C’s tackle the problem imposing automatically the correct set of
B.C.’s when two vortices, generated at levee walls in the dam break problem, move toward the
outlet walls giving recirculation zones at outflow boundary. Figure (15) shows the time evolu-
tion of the water surface when the dam brakes and the system reaching a steady state avoiding
spurious solutions. Figure (16) shows in detail a corner of the downstream portion of the dam
and the fluid entering to the domain (see the velocity vectors) due to the emission of vortices
and their contact with the absorbent walls.

5 CONCLUSIONS

A general methodology to develop absorbent and dynamic boundary conditions for prob-
lems with unknown Riemann invariants is presented. From the computational point of view, the
method is only based on computing the advective flux functions and their projected Jacobians
onto the normals of the artificial boundaries and then, imposing non-linear constraints via La-
grange multipliers or penalty methods as seen in sections §3.7.1 and §3.7.2.
Several interesting aspects of ULSAR conditions are put in relevance not only theoretically but
also numerically, using a number of tests for different hyperbolic non-linear systems of equa-
tions.
Typical problems arising in hydraulic/hydrology areas and how boundary conditions would be
imposed are considered.
The performance and transparency of ULSAR conditions are compared with non-reflecting con-
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Figure 13: Froude number: subcritical to supercritical absorbent/dynamic boundary condition.
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Figure 14: Converged steady state: free surface elevation

ditions based on Riemann invariants in problems with a closed mathematical form for RI giving
similar results in the linear and non-linear region.
It is noticed that the dynamic conditions proposed in this paper are extremely useful when deal-
ing with flow with regime change.
As initially stated (and shown in our previous work (Storti et al. (2008))) that kind of absorbing
boundary conditions reduce computational cost by allowing to put the artificial exterior bound-
ary closer to the region of interest.
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Figure 16: Reversed flow at the outflow boundary.
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