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Abstract. This paper deals with the detection of a crack in a spinning beam (rotor) by me
of the measured frequencies method. This technique as a crack detection criterion has
extensively applied in the last decade meanly due to the fact that frequencies are, among
dynamical parameters, easily measured. However the inverse problem of determination «
crack parameters (location and depth) for a given set of measured frequencies is not simpl
efficient numerical technique has to been employed so as to obtain acceptable results. |
study the effect of the crack is modeled through the introduction of intermediate flexional spi
in a spinning beam of circular cross section and rotating around its longitudinal axis with c
stant angular velocity. The beam-springs analytical model is first stated and the power s
method is employed to obtain the solution for a given set of data, say the springs constant
crack location or the frequency. It should be noted that the springs and the crack depth m
related by some expression from Fracture Mechanics. Here a systematization of the series
rise to an efficient numerical method. An algorithm is then written and prepared to solve
inverse problem. Then experimental frequencies are measured in a cracked spinning bea
this stage, this experiment is performed numerically, with a spinning beam with a notch.
flexural frequencies are obtained. These are the input for the previous numerical algorith
find the solution of the inverse problem: i.e. predict the crack depth and location resp., g
the measured frequencies. Numerical examples are included with an evaluation of the €
in the results. The methodology has been tested previously in an non spinning Euler-Beri
beam with very promising results.
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1 INTRODUCTION

Cracks in structural elements may indicate a fatigue problem, mechanical defects or others
from the manufacturing process. In any case they represent a threat to the reliable behavi
this part or structural element. Then its detection is an important issue.

It is well known that a structural element shows changes in its behaviour due to the pres
of a crack. Many detection methods are based in some structural parameters as the ma
stiffness, the Young’s modulus and in modal parameters such as the frequencies, the
shapes, the mode damping.

Several researchers have tackled the problem with diverse techniques. Many works are
able on crack detection in beatrfs. The cracked rotor (or spinning beam) has been also de
with in several works. See for instanté.

The location and depth estimation of a crack using the changes in the measured frequ
of a cracked member has been an extended criterion in the last years. One of the reas
that frequencies are, among other dynamic parameters, easily obtained from measureme
their experimental determination for a given cracked element is rather direct.

However the inverse problem of determination of the crack parameters (location and d
for a given set of frequencies, in a damaged element, is not as simple. So in order to ¢
meaningful results an acceptable model and an efficient numerical technique have to be ad

In this work the crack detection of a damaged spinning beam (“rotor”) is presented.
authors have dealt with the vibrations of spinning beams with various complexities Before
These papers addressed the cases of a beam with different principal moment of inertia
cross section.

This study tackles the detection problem by modelling the crack in the spinning beam
two intermediate springs in each principal plane. The algebra for the spinning beam with i
mediate springs is first stated. The resulting differential system is solved by means of a p
series technique.

In the direct problem, if the springs constants and their location were known, one woul
able to obtain the natural frequencies of this structural system.

Since the aim of the crack detection is the determination of both its location and deptt
inverse problem has to be stated. The above-mentioned algorithm is used as follows.
measured frequencies of the damaged element are input as data. Once solved, the locat
springs constant are obtained. The Fracture Mechanics equiviléied allow to find the
depth of the crack.

The power series technique are a useful means to have an efficient numerical tool.
authors have solved several ordinary nonlinear problems using a similar apptdachlso
boundary value problems were approached with power s&ri€s.

The methodology is shown with an illustration. The natural frequencies have to be ex|
mentally measured. However, in this stage, the damaged spinning beam (a rotor) is mode
a stepped beam of three spans, the intermediate one representing the notch. This proble
solved using the equations of the spinning b&amd its algebra is included in the Appendix
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From its solution three frequencies are obtained which are then input in the detection algo
to solve the inverse problem. A numerical example illustrates the methodology and the €
are evaluated. These results along with the ones obtained in a previous work on a Bern
Euler bear* are encoraging. At present the authors are addressing the same spinning
problem with other crack configurations and complexities.

2 STATEMENT OF THE SPINNING BEAM VIBRATIONAL PROBLEM

As stated in a previous work of the authbthe transverse, vibrational behaviour of a bea
rotating with constant spin about its longitudinal axis, assuming that its cross section poss
only one axis of symmetry, is governed by the following partial differential equations:

u" + a® (i — Q%u — 2Q0) = 0 (1)
" 4+ A% (D — Q%0+ 2Q0) = 0 (2)

wherew(Z,t) (in x direction) andv(Z,t) (in y direction) are the transverse displacements
the beam in planey of the cross sectiong? = ]g—i A? = 15_2 p is the mass density of
the beam [ is the cross-sectional area of the beainand.J, are the moments of inertia with
respect to the: andy axes, respectivelyy’ is the Young's modulus( is the constant angular
velocity around the longitudinal axi&. Dots denote time differentiation and primes denot
differentiation with respect t&. If normal modes are assumed equations (1) and (2) may

written as

H" — a*(XN* + Q) H +2Q)\f) =0 (3)

"= AR (N + QA f +2QMH) =0 (4)
where H(Z) and f(Z) are the mode shapes, unknowns of the problemare the circular
natural frequencies

On the other hand the detection algorithm is based in a spinning beam with a interme
springs which will be stated in the next section.

3 SPINNING BEAM WITH INTERMEDIATE SPRINGS

The spinning beam with intermediate springs is depicted in Figure 1.

The governing equations (3) and (4) stand for each part of the béarx;) and fi(z)
for the first part andH,(z2) and f2(z;) for the second ond) < z; < 1, z; : are the non-
dimenssionalized variabley = 1,2). The boundary conditions fof(z;) and Hy(z) are
(assuming a simply supported beam)

Hi(0) =0 Hy(1) =0 (5)
H{(0)=0 Hy(1)=0 (6)

and the continuity conditions are the following
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Figure 1: Spinning beam with intermediate springs

Hy(1) = Hy(0) (7)

T v |0 O Y
o)+, |0 - 2O ©
TEH() = SEHE0) =0 (10

Similar expressions are found fgr(z;) and f»(z2). As mentioned before the power serie:
is a well-known technique to solve differential problems.

The basic unknowns in the direct problem are the mode shdpes), Hs(z2), fi(z1) and
f2(22). They are expanded in power series as follows:

Hi(z) =Y Aoz, (11)
)

fi(z) =Y Bua? (12)
10

0<% <1;,5=1,2

wherei, denotes = 0.
After the replacement of the expansions (11) and (12) in the differential system (3) anc
the following recurrence system is obtained.

Ay [(1+0?)Agay — 20B 0]

Agita) = o
g (13)
5 - A [(L+0?)Bay — 2nAg.a)]
(dsi+4) — Oui
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where:
pFL;*)\2

I EJ,
pF L?)\Q
w T TR,
Q

A
oy =+ 1) +2)(i+3)(t+4)

So this way, the eigenproblem may be solved and the natural frequencies and mode <
are found.

The above-described algorithm is appropiate to solve the direct problem; i.e.: given a
ning beam with intermediate springs, the natural frequencies and mode shapes may be ob

The same algorithm will be used to solve the inverse problem as will be described in the
section.

4 CRACKDETECTION IN A SPINNING BEAM

If one is able to measure the natural frequencies in a damaged spinning beam, then the pr
algorithm gives a means to detect a crack, its location and its magnitude.

At this stage of the study and to validate the methodology, a numerical experiment is ca
out in order to simulate it. A three-span beam is employed as a model of a cracked beam
pendix). The crack was assumed symmetric. Although this situation is not the most freque
Is valid to test the methodology. The non-symmetric crack is under study at present.

The spinning beam has a particular behaviour as reported by Baaret Filipichet al®
among other authors. For a given spin (angular velocity) the sequence of natural freque
(ordered numerically), in general, alternate modes. Thus, if we choose an example (see Fi

et al®) (J,=J,=J, Quyp=70, where QND:Q@/;;,—P; ) the first frequency corresponds to the
third mode, the second frequency to the second and so on.

5 NUMERICAL EXAMPLE

As mentioned before, the physical experiment is replaced here with a computational experil
The simply-supported spinning beam has a circular cross-secfign/(=J) of 0.05 m
of radius and length 1.00 m. The mass density43850 kg/ni and the Young's modulus
E=2.1x10! N/m?. The angular velocity is set t8=3879.15 rad/seg and=9051.34 rad/seg

(which corresponds to nondimensional velocities,=30 and2,y ,=70 respectively).

The cracked zone is modeled by a very short span Sxh@vide and a circular cross-sectior
with radius 0.03m (i.e. a crack with= 0.02 m of depth), located at Z=0.3 m.

The values of frequencies of the “damaged” beam obtained for the present exampl
depicted in Tables 1 and 2 found withy ,=30 and(2 =70 respectively.
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Table 1: First four natural frequencies of a cracked be@arip, =30

[ A Mode shape Used
1]1211.71722951021 — ~— | Yes
2 | 2605.48654642698 < | Yes
3| 5152.80468312496 < | No

4| 7603.25283041748 =" | Yes

Table 2: First four natural frequencies of a cracked be@rip=70

[ A Mode shape Used
1| 2431.05867738177 =" | Yes
2| 3960.47692352495 =~ | Yes
3| 7777.68069946014 < | Yes
4| 10324.9988361644 <> | No

For each example the first three values of frequencies are input in the beam-springs
rithm. As is observed in the Tables 1 and 2, there are two different frequencies (among the
four ones) which correspond to a one semi-wave mode. It was found that both values lead
same result in crack detection. Then, the three selected frequencies are each one corre
ing to one semi-wave, two semi-waves and three semi-waves. In this particular problem ¢
spinning beam they are not in sequential order.

After the frequencies are input in the computational program, three clivésack loca-
tion) vs. k£ (argument stiffness) (Figures 2 and 3) are obtained. The intersection of the t
curves is the solution of the crack detection problem. It may be observed that due to the
metry of the problem, two locations are found. In this cAse0.3 m andL; =0.7 m (both at
0.3 m from the ends).

The intersection points are depicted in Table 3.

As may be observed in Table 3, the location were found with very small errors (negligi
with Qnp =30 andQND = 70.

Table 3: Values of location and springs constants found with the crack detection algorithm.

Qnp | L1 (M) | Error % | k (=k,=k,) (Nm)
30 | 0.3001| 0.033 3.3985x10°
70 | 0.3001| 0.033 3.3985x10°
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Figure 2: Curves corresponding to frequencigsi, andX4. Qnp = 30

Table 4: Crack depth found with equivalence with flexibility.

Qnp k (Nm) a (m) | Error %
30 | 3.3985x10% | 0.0181| -9.5
70 | 3.3985x10% | 0.0181| -9.5

In order to obtain the depth a equivalence between the springs constants and the crack
should be used. However to the authors knowledge no such relationship is reported for a
metric crack as the one studied here. Consequently the stepped model of the Appendi
employed to tabulate different values of crack depths and the equivalency of a springs.
appears as an alternative way to find the depth. The results are summarized in Table 4

6 FINAL COMMENTS

A crack detection method in a damaged spinning beam (rotor) was presented.

The detection criterion employed is that of the measured frequencies.

The inverse problem is solved by means of an algorithm developed with a spinning b
having intermediate springs to simulate the crack. A power series technique is employ
tackle the solution. This well-known tool provides an efficient and accurate numerical me
necessary in order to obtain meaningful results.
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Figure 3: Curves corresponding to frequencigsi, ands. Qnp=70

The case of a spinning beam presents certain particularities that increases the comple
any crack detection method based in measured frequencies.

Its vibrational behaviour shows an alternation of mode shapes that changes with the ar
velocity values.

In the present work, a numerical experiment replaces the cracked spinning beam. Alth
this is not the real situation, it is useful to validate the inverse solution.

The results are excellent in the location value an with acceptable errors in the deptl
was observed that the width of the crack (in thelirection) affects the accuracy of the deptl
resulting value. Also, as was expected, the angular velocity value does not affect the
detection.

The authors are at present improving the numerical experiment simulation consideri
nonsymmetric crack.
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APPENDIX

The vibrational problem of a stepped spinning beam of three spans (Figure 4 ) is governt
equations (1) and (2), valid for each span. Once normal modes are assumed, equations (
(4) must be solved for each span, Whéfg(z,), fi(z1), Ha(22), fo(22), H3(z3), f3(23) are the
mode shapes) < z; <;j =1,2,3.

0
Jl.—’
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¥, of ¥

Figure 4: Three span stepped beam with constant angular vefocity

The boundary conditions are:
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H(0)=0;H3(1) =0
) (A1)
1(0):05[’]3(1):0
and the continuity conditions are:
Hi(1) = H(0)
Hy(1) = H;(0)
H{(1) _ Hj(0)
Ly Lo
31 H(0)
Lo L
EJ EJ?
EJ? EJ3
L—;Hﬁ/(l) = L—g/Hg(O)
EJ} EJ?
T = )
EJ? EJ3
) = )

Governing equations (3) and (4) are written in terms of the unknowns (mode shajpesl
f; with j = 1,2,3). The system is then solved after proposing the following expansions
power series:

Hi(z) =Y Aja2,
0

> . A.3
) =3 By -

7=1,23
The natural frequencies and the corresponding mode shapes are then obtained for the «
geometry .
In the present crack detection problem, the intermediate span represents the cracked ¢
and consequently, is assumed small.
On the other hand, the equivalent spring constant of second span (cracked section) n
found as follows:

B e [H() -~ B0
o, Ve =l
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Then for each value of crack depthi.e. dy; = d; — a, it is possible to find the equivalent
spring constank.,. Inversely, given a constaitone is able to find the value of (=J,=J,)
and from it, the corresponding radius of the intermediate span. The valuesdfen derived
directly.
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