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Abstract. The use of the Design by Analysis (DBA) route is a modern trend in pressure vessel and
piping international codes in mechanical engineering. However, to apply the DBA to structures under
variable mechanical and thermal loads, it is necessary to assure that the plastic collapse modes, alter-
nate plasticity and incremental collapse (with instantaneous plastic collapse as a particular case), be
precluded. The tool available to achieve this target is the shakedown theory. Unfortunately, the practi-
cal numerical applications of the shakedown theory result in very large nonlinear optimization problems
with nonlinear constraints. Precise, robust and efficient algorithms and finite elements to solve this prob-
lem in finite dimension has been a more recent achievements. However, to solve real problems in an
industrial level, it is necessary also to consider more realistic material properties as well as to accom-
plish 3D analysis. Limited kinematic hardening, is a typical property of the usual steels and it should
be considered in realistic applications. In this paper, a new finite element with internal thermodynamical
variables to model kinematic hardening materials is developed and tested. This element is a mixed ten
nodes tetrahedron and through an appropriate change of variables is possible to embed it in a shakedown
analysis software developed by Zouain and co-workers for elastic ideally-plastic materials, and then use
it to perform 3D shakedown analysis in cases with limited kinematic hardening materials.
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1 INTRODUCTION

In many technically meaning structural problems, a possible occurrence of pre existing resid-
ual stresses imply that, even if the structure is designed to work in elastic range, eventually at
any point, stresses beyond material yield point can occur. Thus, a realistic safety assessment
necessarily needs to be done in the pos-yield range. Besides, the loads can varying in time and
in each load cycle, plastic deformations occurs, associated with thermal dissipation of internal
energy. After unloading, residual stress fields remains and in each new cycle, new different
residual stress fields appears. Due to some particular configuration reached by those residual
stress fields, after a number of cycles, may occur that the residual stress field staying constant
and the dissipation ceases to increase. This stabilization phenomenon is known as shakedown.
The critical load below which shakedown can occurs is known as shakedown limit. For loads
below this limit, after an initial yielding, the structure starts to behave as elastic being guaran-
teed its safety relating to the plastic failure. By other side, if a non-shakedown condition occurs,
then in each load cycle, the dissipation increase continually and the structure evolve for one of
two failure modes: 1) Alternate Plasticity (Low Cycle Fatigue) - (AP) when the dissipation al-
ways increase although plastic deformation resulting of the various cycles remains limited. 2)
Incremental Collapse (Ratchetting) (IC), when the plastic deformation grows and accumulates
in each load cycle. Both failure modes needs to be precluded. A third failure mode known
as Instantaneous Plastic Collapse (PC) can occur, if for a single load, the structure becomes a
mechanism, with plastic deformation instantly growing without limit. This case can be treated
as a particular case of incremental collapse in which, the collapse occurs in the first cycle (Limit
Load).

Nowadays design codes prescribes a design philosophy known as "Design by Analysis"
(DBA), more general and more compatible with modern analysis technics by the finite element
methods. But, to make use of this way of design, it is necessary, beside other requirements, to
demonstrate that all plastic collapse modes does not occurs (Mackenzie and Boyle, 1996).

The conditions necessary for shakedown has been theoretically studied for a long time and
the theorems related with them (kinematic formulation - Koiter and static formulation - Melan)
are one of the most important achievements in the theory of plasticity. Here we will use the
static formulation (Melan theorem) for what, it is necessary only to know the extremum values
of the loads and the material properties. Although this simplicity, Melan theorem stayed for
a long time just as a theoretical reference. Two facts explain this: first, it was deduced based
in hypothesis that restricted its applicability in real world as for instance, elastic ideally-plastic
materials, small deformations, mechanical properties independent of the temperature and so on.
Aiming mitigate this theorem limitations, important developments was made that extends the
Melan theorem to deal with real materials, at least from a theoretical point of view. The second
fact is that the shakedown analysis is formulated as a very large nonlinear optimization problem
with non-linear constraints and to obtain the numerical solution is necessary the availability of
robust finite elements and precise and efficient optimization algorithms. Because this fact, only
in the last years this tool has becoming available in engineering applications (Staat and Heitzer,
2001). In particular, for the cited case of hardening, Stein et al. (1993) developed an extension
of the Melan’s theorem. By other side, realistic and general applications frequently requires a
3D analysis.

Seeking the applicability of the shakedown theory to an industrial level, a 3D finite element
with internal hardening variable based on Stein’s model will be developed for shakedown anal-
ysis with limited kinematic hardening. A redefinition of the used variables will be done such
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that this element can be used embedded in an efficient and precise algorithm developed for the
case of elastic ideally-plastic materials by Zouain et al. (2002) to perform shakedown analysis.

2 KINEMATIC AND EQUILIBRIUM

The continuum body is identified with an open and connected region B of a euclidian space
ε3, with regular boundary Γ, composed of two complementary and disjoint parts, Γv where the
velocities are prescribed and Γτ where traction is prescribed (Γ = Γv

⋃
Γτ and Γv

⋂
Γτ = ∅).

Let V be the set of all admissible velocity fields v, complying with homogeneous boundary
conditions in Γv. An operator D, over V , maps V into the space W , of strain rates tensor fields
ε and it is called tangent deformation operator. Let W ′ be the space of stress fields σ and V ′ the
space of load systems, F. W ′ is mapped into V ′ by the equilibrium operator D′, dual of D. The
kinematical and equilibrium relations are written as:

ε = Dv F = D′σ (1)

The duality product between W ′ and W , defines for each pair σ ∈ W ′ e ε ∈ W a bi-linear
functional, the internal power.

〈σ, ε〉 =
∫

B
σ · ε dB (2)

The duality product between V and V ′ is the external power defined by the linear functional in
v:

〈F, v〉 =
∫

B
b · v dB +

∫

Γτ

τ · v dΓ (3)

where the load systems are unfolded in body forces b and traction τ , in Γτ . The virtual power
principle is written as:

〈σ,Dv〉 = 〈F, v〉, ∀v ∈ V (4)

3 CONSTITUTIVE RELATIONS

3.1 State variables

To assure physical consistency and adequate formalism we make use of the thermodynamic
of continuous media to derive the constitutive relations. The standard generalized material
model (Halphen and Nguyen, 1975), (Maugin, 1992) is adopted here and small deformations is
considered. The local states method (Lemaitre and Chaboche, 1990), p.57. is used and, aiming
to consider kinematic hardening, the following generalized state variables are adopted:

ε = (ε, 0) generalized strain
εe = (εe, ω) generalized reversible strain
εp = (εp, β) generalized irreversible strain
σ = (σ,A) generalized stress

where, ε is the total strain, εe is the thermo-elastic strain, εp is the plastic strain, β is the ir-
reversible internal hardening variable, ω is the reversible internal hardening variable, σ is the
Cauchy stress tensor and A is the back stress.

With additive decomposition of strain we have ε = εe + εp and then:

ε = εe + εp (5)
0 = ω + β =⇒ ω = −β (6)
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In small deformations, as usual, we call dp = ε̇p. The kinematical relations is written

ε = Dv (7)

with

D =

[ D
0

]
(8)

where D is a strain deformation operator considering the generalized variables.

3.2 State laws

Let θ be the atual temperature and θ0 a reference temperature. Let’s suppose that (θ − θ0) is
small compared to θ0 and that slow heating process occur. In this condition, the process can be
considered approximately isothermal (θ̇ ' 0). Due this fact, the state laws for the thermo-elastic
problem can be derived from a thermodynamical potential Ψ(εe, β), quadratic and positive de-
fined, where the elastic and thermal terms are uncoupled (Matt and Borges, 2001). As elasticity
and hardening are also uncoupled the potential is written:

Ψ(εe, β) =

∫

B

{
1

2
IEεeεe − E

(1− 2ν)
tr(εe)αθ − cε

2θ0
θ2 +

1

2
IHββ

}
dB (9)

The inverse state law can be obtained from a dual thermodynamical potential Ψc(σ,A) obtained
by a Legendre-Fenchel transformation of Ψ (Matt and Borges, 2001):

Ψc(σ,A) =

∫

B

{
1

2
IE−1σσ + αθtr(σ) +

(
3E

(1− 2ν)
α2 +

cε
θ0

)
θ2

2
+

1

2
IH−1AA

}
dB (10)

IE =
E

(1 + ν)
II +

Eν

(1 + ν)(1− 2ν)
(I ⊗ I) , IE−1 =

(1 + ν)

E
II − ν

E
(I ⊗ I) (11)

and assuming linear hardening

IH = hIE , IH−1 =
1

h
IE−1 (12)

Here, E is the Young modulus, ν is the Poisson coefficient, α is the thermal expansion co-
efficient, cε is the strain specific heat constant, h is a proportionality factor and II and I are
respectively the identity forth and second order tensors.

The state laws derived from that potentials are:

σ = ∇εeΨ(εe, β) ⇐⇒ εe = ∇c
σΨ(σ,A) (13)

A = −∇βΨ(εe, β) ⇐⇒ β = −∇c
AΨ(σ,A) (14)

As εe and β are uncoupled, the state laws becomes:

σ = IEεe − E

(1− 2ν)
αθI ⇐⇒ ε = IE−1σ + αθI (15)

and
A = −IHβ ⇐⇒ β = −IH−1A (16)

with IE and IH linear operators.
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3.3 Flow Laws

The evolution laws are derived from a dissipation potential defined by Hill’s maximum dis-
sipation principle:

χ(dp, β̇) = sup
(σ∗,A∗)∈P

(σ∗ · dp + A∗ · β̇) (17)

where P is the plastic admissibility domain.
Let IP (σ,A) be the indicator function of P , that equals zero for (σ∗, A∗) ∈ P and +∞

otherwise. Then, the dissipation χ can be written:

χ(dp, β̇) = sup
(σ∗,A∗)

{σ∗ · dp + A∗ · β̇ − IP (σ,A)} (18)

not being χ Fréchet differentiable. For the case of the associative plastic flow, the constitutive
relations between plastic strain rates (dP , β̇) and stresses (σ,A) are written:

(σ,A) ∈ ∂χ(dp, β̇) ⇔ (dp, β̇) ∈ NP (σ,A) (19)

where ∂χ represents the sub-differential set of χ, defined by:

χ∗(dp, β̇)− χ(dp, β̇) ≥ (σ,A) · [(dp, β̇)∗ − (dp, β̇)] , ∀(dp, β̇)∗ (20)

and NP (σ,A) := ∂IP (σ,A) is the cone of normals to yield surface P in σ, i.e. the set of all
plastic strain rates (dP , β) such as

(σ − σ∗) · dp + (A− A∗) · β̇ ≤ 0 , ∀ (σ∗, A∗) ∈ P (21)

The dissipation function is a support function of P , hence it is sub-linear, i.e. convex and
positive homogeneous of first degree. It also satisfies χ(0, 0) ≥ 0 because (σ,A) = 0 ∈ P . In
the case of Mises criteria, f is unimodal and regular and for generalized standard materials, the
relations (19) are equivalent to the classical form:

(dp, β̇) = λ̇∇f(σ,A) (22)

Here ∇f(σ,A) denotes the gradient of f and λ̇ is a m-vector field of plastic multipliers. At any
point in B, the components of λ̇ are related to each plastic mode in f by the complementarity
conditions:

λ̇f(σ,A) = 0 f(σ,A) ≤ 0 λ̇ ≥ 0 (23)

(this inequalities hold componentwise).

4 SHAKEDOWN ANALYSIS

4.1 Load domain

Shakedown analysis needs only the materials properties and a prescribed domain ∆0 in load
space defined by the extremum loads containing any feasible load history. However, it is more
convenient to mapping this domain in a correspondent domain ∆E in elastic stress space, to
dealing with the mechanical and thermal loads in a same framework. The domain ∆E is as-
sumed to be convex and bounded. Any interior point of polyhedron ∆E is a convex combina-
tion of its vertex. If a non-linear dependence between the loads exists, a function that defines
the load coupling must be discretized. To avoid this, it is still convenient to consider the total
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uncoupling of loads defining a local uncoupled envelope ∆ which collect the extremum values
of stresses corresponding to the loads in each body point, independently of position of the stress
point in the load cycle. Consider the set of all the local values of elastic stresses associated to
any feasible loading, i.e

∀x ∈ B, ∆(x) := {σE(x) | ∀σE ∈ ∆E} (24)

The pointwise envelope ∆ of set ∆E is

∆ := {σ | σ(x) ∈ ∆(x), ∀x ∈ B} ⊃ ∆E (25)

4.2 Shakedown and limited kinematical hardening

The theorem due to Bleich-Melan states that any load factor µ∗ is safe if there exists a time-
independent residual (self-equilibrated) stress field σr such that its superposition with any stress
belonging to the amplified load domain µ∗∆ is plastically admissible. Then, for elastic shake-
down, the limit load factor µ is the supremum of all safe factors. This may be translated as an
elastic shakedown equilibrium variational principle:

µ := sup
(µ∗,σr)∈R×W ′

{µ∗ ≥ 0 | µ∗∆+ σr ⊂ P, σr ∈ Sr} (26)

Stein et al. (1990), Stein et al. (1992) and Stein et al. (1993), studied a shakedown behavior
of kinematic hardening materials bodies using a 3D overlay model for reproduce hardening.
The main idea was to approach the behavior of metals by a composite of elastic-ideally plastic
micro-elements in a dense spectrum, numbered with a scalar variable ξ ∈ [0, 1] and deforming
together.

Let
Φ(σ) :=

3

2
‖S‖2 (27)

be the homogeneous part of Mises yield function. Here the generalized stress deviator is S =
(S,A).

Stein’s work shown that the theorem of Melan can be stated for materials with hardening, in
terms of the back stress A as: If exist a load factor m > 1, a time independent residual stress
field, σr(x) ∈ Sr and a time-independent back stress field A(x, ξ) satisfying

Φ(A(x, 0)) ≤ [σY (x)− σY 0(x)]
2 (28)

such as for all possible loads in the load domain, the condition

Φ(mσE(x, t) + σr(x)− A(x, 0)) ≤ [σY 0(x)]
2 (29)

is fulfilled ∀x ∈ β and ∀t ≥ 0, where m > 1 is a safety factor against non shakedown, then the
total plastic energy dissipated within an arbitrary load path contained within the load domain is
bounded. Here, σY is a yield stress in the end of hardening and σY 0 is the initial yield stress.
This model does not depends on the shape of the hardening curve and because this fact, in spit of
we consider here linear hardening, the resulting shakedown factors are valid for any hardening
curve shape. The correspondent statical principle is:

µ = sup
(µ∗,σr,A)∈R×W ′×W ′

{µ∗ ≤ 0 | Φ(µ∗σE + σr − A) ≤ σ2
Y 0; Φ(A) ≤ (σY − σY 0)

2;σr ∈ Sr}
(30)
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The yield functions corresponding to the conditions of Stein’s statement are:

fS1(σ,A) =
3

2
‖S − Adev‖2 − (σY 0)

2 (31)

fS2(A) =
3

2
‖Adev‖2 − (σY − σY 0)

2 (32)

From the static principle (30), a mixed and a kinematical principles can be derived (Zouain et al.,
2002), (Zouain, 2004). Anyone of this principles or their optimality conditions can motivate a
discretization for the numerical solution.

Let’s consider the whole set of constraints in the mixed principle for the nelem elements
mesh. The plastic admissibility has to be imposed in p points (stress vertices) in each elements
for each basic load n∆ of the load domain. As the load domain ∆ is convex and the stress
interpolation will be linear, then will be necessary to enforce plastic admissibility only at the
triangle vertices to assure this condition over the whole element. Thus, there are pnelem points in
the mesh where plastic admissibility is explicitly enforced for each basic load. This results, for
the Stein’s bimodal yield surface in m := 2pnelemn∆ inequality constraints, that are enumerated
using a single index k = 1 : m in correspondence to (`, i, j) with ` = 1, n∆, i = 1 : 2 and
j = 1 : p nelem. The discrete optimality conditions considering limited hardening with internal
variables can be stated as follows (Nery, 2007), considering

∑
:=

∑
k=1:m:

BTσr = 0 (33)∑
dk = Bv (34)

∑
β̇k + β̇A = 0 (35)

∑
σk · dk = 1 (36)

dk = λ̇k∇σf
k k = 1 : m (37)

β̇k = λ̇k∇Af
k k = 1 : m (38)

β̇A = λ̇A∇Af
A (39)

λ̇kfk = 0 k = 1 : m (40)

λ̇AfA = 0 (41)

fk := fS1(µσ
k + σr, A) ≤ 0 k = 1 : m (42)

fA := fS2(A) ≤ 0 (43)

λ̇k ≥ 0 k = 1 : m (44)

λ̇A ≥ 0 (45)

To solve the shakedown problems in case of hardening one needs to find:

{v, σr, A, µ, λ̇k, λ̇A} (46)

The algorithm developed for elastic ideally-plastic materials by Zouain et al. (2002), Zouain
(2004) can be adapted, to solve shakedown problem with limited kinematic hardening (Nery,
2007). For to do this, the internal variable A will be considered together with the residual stress
in a vector, but not constrained to be residual and the discrete deformation operator B will be
constructed to have null elements in the positions corresponding to the internal variables. The
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new vectors that will be considered to be used in Zouain’s algorithm, to taking into account the
limited kinematic hardening are:

σr = (σr, A) dk = (dk, β̇k) σk = (σk, 0) λ̇
k
= (λ̇k, λ̇A) (47)

With this definitions, the discrete optimality conditions are written:

BTσr = 0 (48)
∑

λ̇
k∇σf

k = Bv (49)
∑

σk · λ̇k∇σf
k = 1 (50)

λ̇
k
fk = 0 k = 1 : m (51)

fk := fS1(µσ
k + σr) ≤ 0 k = 1 : m (52)

fA := fS2(A) ≤ 0 (53)

λ̇
k ≥ 0 k = 1 : m (54)

Then, with this change of variables, the same algorithm developed for elastic ideally-plastic
materials (Zouain et al., 2002), (Zouain, 2004) can be used for materials with limited kinematic
hardening, considering additionally the plastic admissibility constraint (53).

5 MIXED TETRAHEDRON FINITE ELEMENT FOR 3D SHAKEDOWN ANALYSIS
WITH LIMITED KINEMATIC HARDENING INTERNAL VARIABLE

In finite dimension, the discretization in finite elements was done using a ten nodes mixed
two fields (v and σ) tetrahedron. The velocity field is quadratically interpolated with C0 con-
tinuity between elements. The stress field is linearly interpolated and the internal variable field
is constant inside the element, both with inter-element discontinuities. Due to this linear stress
interpolation and to the convexity of the load domain, it is necessary to verify the plastic admis-
sibility only in the four stress nodes of the tetrahedron to assure the plastic admissibility over
all the element. In the following, the bold symbols stands for generalized variables and related
operators and not for tensors as usual.

5.1 Macroscopic and internal 3D variables

v :=
[
vx vy vz

]T (55)

The second order symmetrical tensor can be represented on a six dimension vector space with
a six second order tensor basis. This representation results:

ε :=
[
εx εy εz ε(xy) ε(xz) ε(yz) βx βy βz β(xy) β(xz) β(yz)

]T (56)

d :=
[
dx dy dz d(xy) d(xz) d(yz) β̇x β̇y β̇z β̇(xy) β̇(xz) β̇(yz)

]T
(57)

σ :=
[
σx σy σz σ(xy) σ(xz) σ(yz) Ax Ay Az A(xy) A(xz) A(yz)

]T (58)
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where ε(xy) =
√
2εxy , the same notation been valid for the other shear components. The

compatible strains operator is:

D :=

[
D
0

]
(59)

where the null positions corresponds to the internal variable components.

D :=




∂x 0 0
0 ∂y 0
0 0 ∂z

1√
2
∂y

1√
2
∂x 0

1√
2
∂z 0 1√

2
∂x

0 1√
2
∂z

1√
2
∂y

06×1 06×1 06×1




(60)

The elastic relation is:

IE :=

[
IE 0
0 IH

]
(61)

where

IE = m =
E

(1 + ν)(1− 2ν)




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1− 2ν 0 0
0 0 0 0 1− 2ν 0
0 0 0 0 0 1− 2ν




(62)

with thermal deformation:
εθ = αθ [1 1 1 0 0 0]T (63)

and

IE−1 = n =
1

E




1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1 + ν 0 0
0 0 0 0 1 + ν 0
0 0 0 0 0 1 + ν




(64)

The Stein’s model, used here to calculate the shakedown factor depends only on the initial
and final yield stresses. So, the results are independent on the shape of the hardening curve. We
assume linear hardening H = hE, and H = hE in elastic range, where h is a proportionality
factor.

5.2 The finite element

5.2.1 Variational principle for thermo-elasticity

For thermo-elasticity, a mixed two fields (velocities and stresses) variational principle re-
ferred as Hellinger-Reissner principle is obtained from the thermodynamic potentials Eqs.(9)
and (10) (Matt and Borges, 2001). The variational statement is:
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Find v ∈ V and σ ∈ W ′ such that

ΠHR(v,σ) = inf
v∗∈V 0

sup
σ∗∗∈W ′

[
−1

2

∫

B
σ∗∗IE−1σ∗∗ dB +

∫

B
σ∗∗Dv∗ dB

−
∫

B
F v∗ dB −

∫

B
αθ tr(σ∗∗) dB −

∫

Γτ

tv∗ dB (65)

where IE−1 is defined by Eq. (61). The velocities, stresses and temperature are interpolated in
the element;

v = N vv
n , σ = Nσσ

n , θ = N θθ
n (66)

where the Nv and Nθ represents the quadratic (for velocities and temperature respectively) and
Nσ linear (for stresses) Lagrangian interpolation operators. The vectors ve, σe and θe are the
interpolation parameters for the element e. The discrete Hellinger-Reissner principle can be
written (Matt and Borges, 2001):

ΠHR(v,σ) = min
v∗∈IRs

max
σ∗∗∈IRq

[
−1

2
IE−1σ∗∗ · σ∗∗ + σ∗∗ ·B v∗ − F · v∗ − σ∗∗ ·Θ− t · v∗

]

(67)
where s is the number of velocity degrees of freedom and q is total number of stress parameters
which in this case is twenty four times the total number of elements because the stresses will be
considered discontinuous between the elements. In Eq. 67 the contribution of each element to
be assembled are:

IE−1e =

∫

βe

NT
σ IE

−1Nσ dβ Be =

∫

βe

NT
σ DN v dβ (68)

F e =

∫

βe

NT
v b dβ +

∫

Γe
τ

NT
v t dΓτ Θe =

∫

βe

αNT
σIN vθ

e dβ (69)

Calculating the first variation of Eq. (67), this min-max problem solution is equivalent to solve
the equation set:

IE−1σ −Bv +Θ = 0 (70)

BTσ − F = 0 (71)

with
t = t ∈ Γτ (72)

5.2.2 Interpolation functions

The linear interpolation functions used for stresses are:

`1 = κ (73)
`2 = ξ (74)
`3 = η (75)
`4 = ζ (76)

where
κ = 1− ξ − η − ζ (77)
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and for velocities and temperature, the quadratic interpolation functions are used:

g1 = κ(2κ− 1) (78)
g2 = ξ(2ξ − 1) (79)
g3 = η(2η − 1) (80)
g4 = ζ(2ζ − 1) (81)
g5 = 4ξκ (82)
g6 = 4ξη (83)
g7 = 4ηκ (84)
g8 = 4ζκ (85)
g9 = 4ξζ (86)
g10 = 4ηζ (87)

The internal variables are constant in the element.

5.2.3 Interpolation operators

The velocity components in the ten nodes tetrahedron are:

vi =
[
v1x v1y v1z . . . v10x v10y v10z

]T ∈ IR30 (88)

and for this element the interpolation function matrix for velocities and temperature are:

N v =
[
g11 3 . . . g101 3

] ∈ IR3×30 (89)

and
N θ =

[
g1 . . . g10

] ∈ IR10 (90)

For the k stress nodes we have:

εi :=
[
εkx εky εkz εk(xy) ε

k
(xz) ε

k
(yz) βx βy βz β(xy) β(xz) β(yz)

]T ∈ IR30 (91)

di :=
[
dkx dky dkz dk(xy) d

k
(xz) d

k
(yz) β̇x β̇y β̇z β̇(xy) β̇(xz) β̇(yz)

]T
∈ IR30 (92)

σi :=
[
σk
x σk

y σk
z σk

(xy) σ
k
(xz) σ

k
(yz) Ax Ay Az A(xy) A(xz) A(yz)

]T ∈ IR30 (93)

with k varying from 1 to 4.

Nσ =

[
`116 `216 `316 `416 06×6

06×6 06×6 06×6 06×6 16

]
∈ IR12×30 (94)

Here, the symbol 0i×j stands for a matrix with i lines and j columns of null positions and the
symbol 1i stands for a unit diagonal matrix with i positions.
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5.2.4 Discrete strain operator

Let βe be the element volume. The discrete strain operator is obtained from the relation:

B =

∫

βe

NT
σ DN v dβ =

[
B1 . . . B10

] ∈ IR30×30 (95)

where
N v =

[
B1 . . . B10

] ∈ IR12×30 (96)

Bk =




gk,x 0 0
0 gk,y 0
0 0 gk,z

1√
2
gk,y

1√
2
gk,x 0

1√
2
gk,z 0 1√

2
gk,x

0 1√
2
gk,z

1√
2
gk,y

06×1 06×1 06×1




∈ IR12×3 (97)

and, for k varying from 1 to 10

Bk =

∫

βe




`1 gk,x 0 0
0 `1 gk,y 0
0 0 `1 gk,z

1√
2
`1 gk,y

1√
2
`1 gk,x 0

1√
2
`1 gk,z 0 1√

2
`1 gk,x

0 1√
2
`1 gk,z

1√
2
`1 gk,y

`2 gk,x 0 0
0 `2 gk,y 0
0 0 `2 gk,z

1√
2
`2 gk,y

1√
2
`2 gk,x 0

1√
2
`2 gk,z 0 1√

2
`2 gk,x

0 1√
2
`2 gk,z

1√
2
`2 gk,y

`3 gk,x 0 0
0 `3 gk,y 0
0 0 `3 gk,z

1√
2
`3 gk,y

1√
2
`3 gk,x 0

1√
2
`3 gk,z 0 1√

2
`3 gk,x

0 1√
2
`3 gk,z

1√
2
`3 gk,y

`4 gk,x 0 0
0 `4 gk,y 0
0 0 `4 gk,z

1√
2
`4 gk,y

1√
2
`4 gk,x 0

1√
2
`4 gk,z 0 1√

2
`4 gk,x

0 1√
2
`4 gk,z

1√
2
`4 gk,y

06×1 06×1 06×1




dβ ∈ IR30×3 (98)
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5.2.5 Elastic relation for the element

Considering the m and n matrices as defined in Eqs. (62) and (64) the following discrete
elastic relation can be written in terms of the global vector of stress parameters

NT
σ IE

−1Nσ =




`21n `1`2n `1`3n `1`4n 06×6

`1`2n `22n `2`3n `2`4n 06×6

`1`3n `2`3n `23n `3`4n 06×6

`1`4n `2`4n `3`4n `24n 06×6

06×6 06×6 06×6 06×6
1
h
n



∈ IR30×30 (99)

IE−1e =

∫

βe

NT
σ IE

−1Nσ dβ ∈ IR30×30 (100)

Calculating the matrix a such that

a−1 :=

∫

βe




`21 `1`2 `1`3 `1`4
`1`2 `22 `2`3 `2`4
`1`3 `2`3 `23 `3`4
`1`4 `2`4 `3`4 `24


 dβ ∈ IR4×4 (101)

and being βe the element volume we have:

IE−1e =




a11n a12n a13n a14n 06×6

a21n a22n a23n a24n 06×6

a31n a32n a33n a34n 06×6

a41n a42n a43n a44n 06×6

06×6 06×6 06×6 06×6
βe

h
n



∈ IR30×30 (102)

The coefficients of IE−1e are obtained by integration considering a quadratic mapping of the
geometry. Obtained the matrix IE−1e the matrix IEe can be obtained by direct inversion, taking
advantage of the uncoupling between the coefficients matrices aij and Ωe

h
.

IEe =




a11m a12m a13m a14m 06×6

a21m a22m a23m a24m 06×6

a31m a32m a33m a34m 06×6

a41m a42m a43m a44m 06×6

06×6 06×6 06×6 06×6
h
βem




∈ IR30×30 (103)

5.2.6 Discrete thermal deformation

θn =
[
θ1 . . . θ10

] ∈ IR10 (104)

θe =
∑

gj θ
j (105)

Θn =




α
∑

gj θ
j

α
∑

gj θ
j

α
∑

gj θ
j

03×1


 (106)
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Θe =

∫

βe




α `1
∑

gj θ
j

α `1
∑

gj θ
j

α `1
∑

gj θ
j

03×1

α `2
∑

gj θ
j

α `2
∑

gj θ
j

α `2
∑

gj θ
j

03×1

α `3
∑

gj θ
j

α `3
∑

gj θ
j

α `3
∑

gj θ
j

03×1

α `4
∑

gj θ
j

α `4
∑

gj θ
j

α `4
∑

gj θ
j

03×1




dβ ∈ IR30 (107)

5.3 Stein’s model - discretization of yield functions and their gradients and Hessians

For each one of the fours stress nodes, two yield modes exists corresponding to the yield
surfaces of the Stein’s model. Thus, in the element, eight yield modes have to be considered.

5.3.1 Yield modes

For k varying from 1 to 4

f
(k)
S1 =(σ(k)

x − Ax)
2 + (σ(k)

y − Ay)
2 + (σ(k)

z − Az)
2 − (σ(k)

x − Ax)(σ
(k)
y − Ay) (108)

− (σ(k)
x − Ax)(σ

(k)
z − Az)− (σ(k)

y − Ay)(σ
(k)
z − Az) (109)

+
3

2
(σ

(k)
(xy) − A(xy))

2 +
3

2
(σ

(k)
(xz) − A(xz))

2 +
3

2
(σ

(k)
(yz) − A(yz))

2 (110)

− σ2
Y 0 (111)

f
(k)
S2 =A2

x + A2
y + A2

z − AxAy − AxAz − AyAz +
3

2
A2

(xy) +
3

2
A2

(xz) +
3

2
A2

(yz) (112)

− (σY − σY 0)
2 (113)

5.3.2 Gradients

Defining G1, G2 and G3 matrix as below:

G1 =




2(σ
(1)
x − Ax)− (σ

(1)
y − Ay)− (σ

(1)
z − Az)

2(σ
(1)
y − Ay)− (σ

(1)
x − Ax)− (σ

(1)
z − Az)

2(σ
(1)
z − Az)− (σ

(1)
x − Ax)− (σ

(1)
y − Ay)

3(σ
(1)
(xy) − A(xy))

3(σ
(1)
(xz) − A(xz))

3(σ
(1)
(yz) − A(yz))




(114)
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G2 =




−2(σ
(1)
x − Ax) + (σ

(1)
y − Ay) + (σ

(1)
z − Az)

−2(σ
(1)
y − Ay) + (σ

(1)
x − Ax) + (σ

(1)
z − Az)

−2(σ
(1)
z − Az) + (σ

(1)
x − Ax) + (σ

(1)
y − Ay)

−3(σ
(1)
(xy) − A(xy))

−3(σ
(1)
(xz) − A(xz))

−3(σ
(1)
(yz) − A(yz))




(115)

and

G3 =




2Ax − Ay − Az

2Ay − Ax − Az

2Az − Ax − Ay

3A(xy)

3A(xz)

3A(yz)




(116)

The components of the gradient in each stress nodes are:
Node 1

∇σf
(1)
S1 =




G1
018×1

G2


 (117)

∇σf
(1)
S2 =

[
024×1

G3

]
(118)

Node 2

∇σf
(2)
S1 =




06×1

G1
012×1

G2


 (119)

∇σf
(2)
S2 =

[
024×1

G3

]
(120)

Node 3

∇σf
(3)
S1 =




012×1

G1
06×1

G2


 (121)

∇σf
(3)
S2 =

[
024×1

G3

]
(122)

Node 4

∇σf
(4)
S1 =




018×1

G1
G2


 (123)

∇σf
(4)
S2 =

[
024×1

G3

]
(124)
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5.3.3 Hessian discretization

Calling:

He =




2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3




(125)

(126)

the Hessian matrix in the four stress nodes are written:

(127)

Node 1

∇σσf
(1)
S1 =




He 06×18 −He
018×6 018×18 018×6

−He 06×18 He


 (128)

∇σσf
(1)
S2 =

[
024×24 024×6

06×24 He

]
(129)

(130)

Node 2

∇σσf
(2)
S1 =




06×6 06×6 06×12 06×6

06×6 He 06×12 −He
012×6 012×6 012×12 012×6

06×6 −He 06×12 He


 (131)

∇σσf
(2)
S2 =

[
024×24 024×6

06×24 He

]
(132)

(133)

Node 3

∇σσf
(3)
S1 =




012×12 012×6 012×6 012×6

06×12 He 06×6 −He
06×12 06×6 06×6 06×6

06×12 −He 06×6 He


 (134)

∇σσf
(3)
S2 =

[
024×24 024×6

06×24 He

]
(135)

(136)

Node 4

∇σσf
(4)
S1 =




018×18 018×6 018×6

06×18 He −He
06×18 −He He


 (137)

∇σσf
(4)
S2 =

[
024×24 024×6

06×24 He

]
(138)

D. NERY, R. JOSPIN1438

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



6 APPLICATIONS

To verify the robustness and precision of this element in a 3D shakedown analysis, an appli-
cation was done to a case with analytical solution. For the same case, a comparison between
this 3D element with an axisymmetric one developed by Nery (2007) was done.

The example is a long closed pipe, subjected to internal pressure varying between zero and a
maximum value pint. Independently, the pipe is subjected to a variable temperature field θ(R)
with an instantaneous logarithm profile trough the wall. Let θext = θ0 = 0 be the external
reference temperature and θint the internal temperature varying between θext and a maximum
value θint. The shakedown analytical solution was developed by Zouain and Silveira (2001) for
ideal plasticity and by Nery (2007) for limited kinematic hardening.

6.1 Closed pipe under variable pressure and temperature loads

Figure 1: Free, long and closed pipe subject to independent variable pressure and thermal loads. The thermal load
has a logarithmic profile through the wall. Is shown the 43 axisymmetric finite element mesh used in comparisons.

Figure 2: Tetrahedron 6232 elements mesh for the same example.
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The internal and external radii of the tube are denoted by Rint and Rext, respectively. We define
a dimensionless radius

r :=
R

Rext

(139)

that substitutes the radius R. Considering a dimensionless geometric parameter

` =
Rext

Rint

(140)

and a mechanical parameter
p :=

pint
(`2 − 1)σY

(141)

where σY is a yield stress at the end of hardening. Thus, p varies between zero and

p =
pint

(`2 − 1)σY

(142)

The collapse pressure of the closed pipe is:

pc =
2√
3
σY ln ` (143)

We can define another parameter

β :=
`2 − 1

2 ln `
(144)

and then, the mechanical load can be represented by:

p̂ :=
pint
pc

=
√
3βp (145)

varying between 0 e p̂ =
√
3βp.

The temperature profile θ through the wall as function of r is:

θ(r) = θext − (θint − θext)
ln r

ln `
(146)

To describe thermal stresses is used a dimensionless parameter

q :=
Eαθ(θint − θext)

2(1− ν)(`2 − 1)σY

(147)

In dimensionless form, the limits of thermal load are zero and

q :=
Eαθθ

2σY (1− ν)(`2 − 1)
(148)

Aiming to produce Bree-type diagrams as usually, a new dimensionless thermal parameter is
defined:

q̂ :=
Eαθ(θint − θext)

2(1− ν)σY

= (`2 − 1)q (149)

of which limits are zero and

q̂ = (`2 − 1)q =
Eαθθ

2σY (1− ν)
(150)
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The external loading is obtained by the solution of elastic stresses for a long, closed pipe:
σp, under pressure only and σq under pure thermal load. This stress fields can be represented in
dimensionless form using the reduced tensor

σ̃ := (1/σY )σ (151)

Then:
σ̃p := (1/pσY )σ

p σ̃q := (1/qσY )σ
q (152)

and the following variable loads are produced by elastic stresses:

σE = σY (pσ
p + qσq) (153)

where the basic elastic fields are defined in Zouain and Silveira (2001) and in Gokhfeld and Cherniavsky
(1980).

The local domain of variable loads ∆(r) will be the parallelogram with four vertex {σ̃k(r); k =
1 : 4} defined by Eq.(153) with (p, q) = {(0, 0), (0, q), (p, q), (p, 0)}.

6.1.1 Analytical solution for alternating plasticity with hardening

Nery (2007) extend for limited kinematic hardening the work of Zouain and Silveira (2001)
to obtain an analytical solution for the case when alternate plasticity occurs. The load amplifier
factor ω satisfies the equation:

(ωp̂)2`4(`2 − 1)2 + 4(ωq̂)2β2(`2 − β)2+

2
√
3(ωp̂)(ωq̂)β`2(`2 − 1)(`2 − β) = 4β2(`2 − 1)2

(
σY 0

σY

)2

(154)

Plotted in a Bree-type diagram, as a function of the critical parameters defined in Eqs. (145)
and (150), (p̂, q̂) = (ωp̂, ωq̂), this curve is an ellipse.

6.1.2 Analytical solution for incremental collapse

For elastic ideally-plastic materials, Zouain and Silveira (2001) finds an exact analytical so-
lution from a simple mechanism of incremental collapse and beside this, an approximation with
0,6% error, which is the straight line defined by 155, with ρub ≤ µ:

ρubp̂+

√
3β [1− β(1− ln β)]

(`2 − 1)2
ρubq̂ = 1 (155)

This results to be the same for limited kinematic material for incremental collapse.
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6.1.3 Comparison between analytical and numerical solutions

Analytical and numerical values of 3D analysis for a pipe with relation ` := Rext/Rint =
1.25 are plotted in a Bree-type diagram, for elastic ideally-plastic (Zouain and Silveira, 2001),
and for limited kinematical hardening materials, so that the comparisons can be made.

In figure (3) is shown the interaction Bree-type diagram for a long closed pipe, under in-
dependent thermal and pressure loads, in ideal plasticity σY 0/σY = 1.0 and with kinematic
hardening material with σY 0/σY = 0.8. In this and in the following figure, the notation S in-
dicates shakedown domain and E indicate the elastic domain. AP means alternate plasticity
mechanism domain and IC means incremental collapse domain.
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 1,0


0,0
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1,4


1,6


1,8


2,0


hardening


ideal plasticity


hardening


ideal plasticity
AP


E

IC


S


^


^


p


q


Figure 3: Interaction Bree-type diagram with the comparison between 3D analysis with 6232 tetrahedron elements
(black squares) and analytical solution (lines) for a tube with thick wall ` = 1.25 for ideal plasticity σY 0/σY = 1.0
and for limited kinematic hardening with σY 0/σY = 0.8.

6.1.4 Comparison between 3D and axisymmetrical numerical solutions

For the same example, the numerical results of the 3D shakedown analysis is compared with
the numerical results of the axisymmetric one (Nery, 2007).
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Figure 4: Interaction Bree-type diagram with the comparison between 3D analysis with 6232 tetrahedron elements
(black squares) and axisymmetrical elements (hollow circles and lines) for a tube with thick wall ` = 1.25 for ideal
plasticity σY 0/σY = 1.0 and for limited kinematic hardening with σY 0/σY = 0.8.

7 CONCLUSION

In this work, the development of a mixed finite element to perform 3D shakedown analysis
taking into account limited kinematic hardening materials was showed, extending the use of a
available precise, efficient and robust algorithm developed originally for elastic ideally-plastic
materials. This is in line with the current trend observed in a number of countries in which
are involved universities, research centers and the industry searching for more realistic material
properties in the 3D shakedown analysis. In industrial level, this important achievement permits
to treat more complex components such as pipe bifurcations, valves and so on, aiming to assure
their safety by the DBA analysis. Postulate defects in components also can be considered
through a 3D analysis. Future developments should be made to enhance this element aiming to
consider ductile plastic damage and the influence of temperature in the material properties to
match the industrial demand for more realistic results.
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