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Abstract. We integrate the ideal magnetogasdynamics equations to simulate dark void sunward 
moving structures in post-flare supra-arcades. We study the generation and evolution of the internal 
plasma instability to compare with observations and to gain insight into physical processes and 
characteristic parameters of these phenomena. The numerical approach uses a finite-volume method 
together the Harten–Yee total variation diminishing (TVD) scheme to integrate non-steady, one-
dimensional magnetogasdynamics. Two set of numerical tests were carried out, one of them in the 
sunward radial direction and the another one transverse to the sun’s magnetic field. We can 
numerically reproduce dark void solar observations. We show that the dark lanes are plasma vacuums 
generated by the bouncing and interfering of shocks and expansion waves produced by a localized 
deposition of energy. This energy deposition is modeled as a pressure perturbation. The pressure 
perturbation produces non-linear waves that compose the plasma void structures, with the same 
functional sunward decreasing phase speed and constancy with height of the period, as those 
determined by the observations. 
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1 1 INTRODUCTION 

Dark sunward sinuous lanes moving along a fan of rays above post–flare loops towards a 
supra–arcade have been extensively studied (McKenzie 2000; Innes et al. 2003a,b; Asai et al. 
2004; McKenzie and Savage 2009). The down moving structures observed at 40Mm - 60Mm 
heights above the top of arcades, with a decelerating speed in the range of 50 - 1000km/s 
were interpreted as sunward voided flows generated by reconnection processes developed by 
a current sheet above the flare arcade. Verwichte et al. (2005) analyzed transverse to the 
magnetic field oscillations associated with sunward dark lanes in a post–flare supra–arcade. 
They found that the phase speeds and the displacement amplitudes, of observational dark 
lanes of a kink–like type, decrease as they propagate downwards while the period remains 
constant with height.  

In Costa et al. (2009) and in Schulz et al. (2010) by the integration of one dimensional and 
time dependent magnetogasdynamics ideal equations, we presented a new scenario to 
numerically give account of the observational dark voids described in Verwichte et al. (2005). 
We simulated the effects of an initial impulsive and localized deposition of energy in a 
plasma structured by sunward magnetic field lines. The impulsive phase was modeled by a 
pressure perturbation that initiates two main different type of processes, a fundamentally 
hydrodynamic shock pattern directed sunwards and a perpendicular magnetic shock one, i.e., 
transversal to the magnetic field. The two patterns were supposed to be partially independent 
processes linked by their common origin and background magnetic and density conditions. 
The independence of the two dynamics was justified due to the far more effective conductive 
energy transport along field lines than across them.  

In the transverse direction y, the resulting interactions of nonlinear waves that rebound in 
the denser external medium composes and sustains, in accordance with observational 
characteristic times of the phenomenon, a density structure with a central void resembling a 
kink–like mode or a sausage–like mode.  

The same reference values were used as initial conditions to simulate the sunward 
evolution. We could reproduce the observational data showing that initially two opposite 
shock evolving fronts are produced. One evolves towards the sun surface until is absorbed, 
and the other is forced to rebound upwardly resembling the action of the reconnection site.  

In Schulz, et al. (2010) we analyze the sensibility of the phenomena to different initial 
conditions and, subject to the limitations of our modeling, we show the functional dependence 
of the amplitude, the phase speed and the periods with plasma parameters. We estimate the 
range of possible physical conditions that could give rise to the voided phenomena, i.e., 
magnetic field intensity and triggering pulse pressure. 

In this paper we present details about the implemented numerical scheme to evaluate the 
dynamics of the solar dark lanes. To simulate time dependent magnetogasdynamics flows it is 
used a software method developed by us (Elaskar and Brito, 2001). The implemented 
equations are continuity, momentum, energy and magnetic induction equations together with 
the state equation forming a system of partial hyperbolic differential equations. The numerical 
approach is based on an approximate Riemann solver with a high resolution TVD technique. 
The eight-wave technique introduced by Powell (1995) is used and the eigenvectors are 
normalized according to Zarachay, et al. (1994) and Roe (1996). The accuracy of the 
technique was verified by simulations of the Riemann problem introduced by Brio and Wu 
and the Hartmann flows (Maglione et al. 2007). 
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2 MAGNETOGASDYNAMICS EQUATIONS 

The equations of non-dimensional transient real MGD in conservative form are given by 
(Goldston and Rutherford, 2003; D'Ambrosio and Giordano, 2004). 
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where ρ, u ,e ,p, T are the density, velocity, total energy, pressure and temperature of plasma 
respectively. B is the magnetic field, K thermal conductivity, η  electrical resistive and τ  
viscous stress. Re, Al, Lu, Pe are the Reynolds, Alfvén, Lundquist  and Peclet numbers.  

The ideal MGD equations accurately describe the macroscopic dynamics of perfectly 
conducting plasma. This system expresses conservation of mass, momentum, energy, and 
magnetic flux and conform a nonlinear conservative system of eight partial differential 
equations. The equations of non-dimensional ideal one-fluid MGD in conservative form are 
given by (D'Ambrosio and Giordano, 2004); 
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To close de system, the perfect gas state equation is introduced, so the specific internal 
energy depends on the temperature only. Then the total energy results, 
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Using a Cartesian coordinate system Eq.(2), for two dimensions in quasi-linear form, ) can 
be written as 
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where [Ac] y [Bc]  are the Jacobian matrices. The evaluation of the eigenvalues and the 
eigenvectors is simpler using the conservative variables: 
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To overcome the difficulties introduced by the null eigenvalue of the Jacobian matrices, 
the eight-wave technique introduced by Powell (1995) is used in this work. The modified 
Jacobian matrix [Ap] (using primitive variables) is:  
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 The eigenvectors are normalized according to Zarachay et al. (1994) and Roe (1996). The 
resulting eigenvalues representing MGD waves are: “entropy wave”, “Alfvén waves”, “fast 
magneto-acoustic waves”, “slow magneto-acoustic waves” and “magnetic flux wave”. The 
expressions for these are: 

-Entropy wave: e xuλ = .  
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-Alfvén waves:  a x au cλ = ±      
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-Fast magneto-acoustic waves:  f x fu cλ = ±  
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-Slow magneto-acoustic waves: s x su cλ = ±  
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-Magnetic flux wave:  d xuλ =  
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The Alfvén, entropy wave and magnetic flux waves, are linearly degenerate; hence the 
flow velocity is constant throughout the movement. The magneto-acoustic waves are 
nonlinear and can be shock or rarefaction waves. However, under particular relations between 
the magnetic field and the sound velocity theses waves may be locally non-convex (Courant 
and Fridrich, 1999; Serna, 2009).  
 

3 NUMERICAL FORMULATION 

To obtain the numerical solution of the system described by Eq.(2), a finite volume scheme 
has been implemented using a structured mesh, together with an approximate Riemann solver 
to calculate the fluxes with an explicit finite-difference scheme for the evaluation of the time 
evolution. 

The numerical flows are evaluated by means of the Harten-Yee TVD technique, which 
allows the capturing of discontinuities, simultaneously achieving a second order approach 
(Yee, 1989). 

The explicit TVD-finite volume scheme can be expressed as: 
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where the function that determines the second-order numerical flux is defined as 
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The limiter function used is one of minmod type, 
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Approximate Roe-type Riemann solver produces only shock waves so a physically correct 
smooth rarefaction wave is replaced by a rarefaction shock wave that violates the entropy 
condition. An alternative to correct this non-physical solution is using a “sonic entropy fix” 
that smoothes out eigenvalues in the vicinity around zero. Harten (1982) suggested an entropy 
fix for Roe’s method, which has been widespread used: 
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The function ψ  in Eq.(15) is an entropy correction to z, whereas δ is generally a small and 
constant value that needs to be calibrated for each problem. A proper choice of the entropy 
parameter δ  for higher Mach number flows helps in preventing nonphysical solutions and can 
act, in some sense, as a control of the convergence rate and the sharpness of shocks (Yee, 
1989). 

For time-accurate calculations in explicit numerical algorithms 
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and the wave strength of the m-th wave is 
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m m

i i+= ⋅ −α L W W  (20) 

where mL  is the left eigenvector for the m-th wave and W represents the primitive variable 
vector. 
 

4 MODEL  

We perform two set of partially independent simulations. One of them in the sunwards 
direction, and the other directed transversally to them. The coordinate x represents the 
sunward direction and the y coordinate is transverse to the magnetic field one. We chose as 
test case the edge C observational parameters taken from Verwichte et al. (2005), shown in 
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Table 1. The non–dimensional quantities used for the numerical simulations are the ratios of a 
dimensional quantity and a reference one. We assume an initial ratio of pressure values and a 
characteristic background density, the reference value ρref. Figure 1 exhibits the geometrical 
used model for both set of numerical simulations. 

 
 

 
Figure 1. Geometry of the model. The same geometry is implemented for the x and y coordinates 

 

 
Table 1. Observational parameters for Verwichte et al. (2005). τ is the period, Vph  is the sunward observational 

phase speed and A is the amplitude. 

 

 
Table 2. Initial condition values for the transverse pattern simulation shown in Figs. 2 and for the sunward 
pattern simulation shown in Fig. 3c. The initial non-dimensional conditions are p1 = p3, ρ1 = ρ2 = ρ3 = 1. 

 
The other reference values are derived from the following calibration procedure. For the 

transverse shock we perform the iteration: 

(i) We chose Bref as the background magnetic field value of the test case, thus Bref must 
satisfy the condition  β  < 1 (in our tests β = 0.1). The reference value of the magnetic 
pressure is pref = B2

ref /2μo. 
 

(ii) From the numerical transverse simulation (e.g., Fig. 2a) we obtain the reference 
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amplitude Aref and the reference period τref ; τref =τ/τn  and Aref = A/An; being τ and A  the 
observational values for the amplitude and period of the test case in Table 1. τn and An are the 
non–dimensional amplitude and period taken from the simulation. Figure 2a corresponds to 
the last step of the iteration and gives the numerical density of the resulting transverse 
perpendicular magnetic shock pattern, using the initial conditions given in Table 2 (first line). 

 

(iii) The non–dimensional velocity, amplitude and period are related by the expression, Vn 
= 2An/τn. The reference velocity is determined from the correspondent dimensional speed V = 
Vn Vref = 2A/τ  as Vref = 2A/(τ Vn) 

 

(iv) If the reference magnetic field satisfies /ref ref o refV B= μ ρ ; the iteration finishes. If 

not, new elections of Bref  are accomplished, giving new numerical determinations of An/τn and 
Vn, until the relation holds.  

 

(v) Then, the reference temperature value is obtained using the state equation for atomic 
hydrogen: pref = R ρref Tref . 

 
Using this procedure we obtain the reference values of the transverse simulations for the 

test case. For ρref = 2x10-11kg/m3; the resulting reference values are Bref = 20G, pref = 1.6Pa, 
Tref = 9x106K and Vref = 188km/s; Aref = 12943km and τref = tref = 69s correspond to the non–
dimensional values An = 0:07 and τref = tn = 1.95 obtained from Fig. 2a. These values are also 
used for the sunward simulation modeled as a pressure perturbation is localized at the 
partition y2 (corresponding to Lv = 50Mm) of the whole interval y = (y1; y2; y3) (see Table 2). 
The background gas pressure of the corona is p1 = p3. 
 

5 RESULTS 

We carried out two different group of simulation, one for sunward direction, and other for 
transverse direction.  

5.1 Transverse perpendicular magnetic shocks 

Figures 2a-d show, respectively, the numerical results of the density, temperature, 
magnetic pressure and gas pressure patterns of the test case as a function of time. The void, 
that satisfies the edge C description in Verwichte et al. (2005), is the result of a nonlinear 
evolution of waves triggered by the instantaneous initial pressure pulse that excites the whole 
pattern. We note that the perturbation, seen as a transverse to the field line phenomenon, 
produces opposite magnetic shock waves that bounce in the lateral and denser boundary 
medium. The resulting oscillatory pattern of interacting nonlinear waves composes a void 
cavity which is sustained for a time interval adjusting the observations. In accordance with 
McKenzie (2000), Figs. 2a-b show that the moving voids consist of a low–density and high–
temperature plasma with respect to the surrounding medium.  
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Figure 2a. Evolution of the non-dimensional density. Dimensional values can be obtained multiplying byAref = 

33556km, tref = 67s and ρref = 10-12
 kg/m3. 

 

 
Figure 2c exhibits that the magnetic pressure is lower inside the void than in the external 

medium. However, due to the larger temperature values inside the void, it results that the 
inner gas pressure (see Fig. 1d) compensates the lower magnetic pressure, both of which 
equilibrate the lower gas pressure plus the larger magnetic pressure of the outside media, the 
total inside pressure (Pg + Pmag), which equals the total outside pressure, (Pg + Pmag)out'. Thus, 
our simulations allow a description of the phenomenon where the void cavity is a β > 1 
perturbed region generated by the non–linear interaction of transverse waves. In this sense the 
void can be thought of as an emergent property of the collective and non–linear plasma 
interactions. 

5.2 Radial hydrodynamic shocks 

In the radial direction the pressure pulse is supposed to be associated with an upward 
reconnection event, from where field lines slowly retract away under the force of magnetic 
tension (McKenzie 2000). The pulse generates shocks traveling sunwards and outwards, 
along the magnetic field lines. The nonlinear interaction of outward rebound waves, near the 
reconnection site, and sunward absorbed ones compose an overall descending void structure. 
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Figure 2b Evolution of the non-dimensional temperature. Dimensional values can be obtained multiplying by Aref 

= 33556km, tref = 67s  and  Tref = 3.106
 K. 

 
Figure 3a-c gives numerical results obtained varying the pressure pulse: p2/p1 = 2; 5 and 

20; respectively. In accordance with the assumption that in the radial direction the role of the 
magnetic field is to guide the interacting hydrodynamic waves the figures are not modified 
when the magnetic field intensity is varied. Figure 3c, equivalent to Figure (2C) in Verwichte 
et al. (2005), corresponds to the test case. The sunward perturbation is absorbed by the denser 
media nearer to the sun surface. The upward moving shock is forced to rebound at xn = 1: The 
interaction of the subsequent waves composes a downward moving void as it is indicated in 
the figures by the color contrast, i.e. darker features correspond to lower values of the density.  

Non-linear wave interactions generate a region of low density that is separated from a 
vacuum upper zone, also formed by the interaction of nonlinear upward and downward 
moving perturbations. This intermediate vacuum zone can be clearly appreciated in Figs. 3a-
b. For these cases the jump in the density discontinuity is less pronounced. It is interesting to 
note the similarity between the numerical results and Figs. 2c-d in Verwichte et al. (2005).  

To compare our sunward speed values with those in Verwichte et al. (2005) we calculated 
the velocity of the curve limiting the vacuum zone. Figure 4 shows the good accordance 
between the test numerical case for p2/p1 = 20 and the correspondent observational curve.  
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Figure 2c Evolution of the non-dimensional magnetic pressure. Dimensional values can be obtained multiplying 

by Aref = 33556km, tref = 67s and pref = 0.25Pa. 

 

 
Figure 2d. Evolution of the non-dimensional mechanic pressure. Dimensional values can be obtained 

multiplying byAref = 33556km, tref  = 67s and  pref = 0.25Pa. 

Mecánica Computacional Vol XXIX, págs. 3371-3387 (2010) 3383

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 
 

 
Figure 3a. Radial simulation for p2/p1 = 2.  xn = 0.7 corresponds to Lv = 50 Mm and tref  = 67s 

 

 
Figure 3b. Radial simulation for p2/p1 = 5.  xn = 0.7 corresponds to Lv = 50 Mm and tref  = 67s 
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Figure 3c. Radial simulation for p2/p1 = 20.  xn = 0.7 corresponds to Lv = 50 Mm and tref  = 67s 
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Figure 4. Comparison between the radial velocity obtained by numerical simulation and experimental 

measurements as function of the sunward distance for p1/p2 = 20. 
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6 CONCLUSIONS 

We have integrated the ideal magnetogasdynamics equations to simulate observational 
solar dark lane data. We simulated the effects of an initial impulsive and localized deposition 
of energy – supposed to be associated with above reconnection processes – in a structured 
plasma by sunward magnetic field lines. The impulsive phase is modelled by a pressure 
perturbation that initiates two main different types of processes, a fundamentally 
hydrodynamic shock pattern directed sunwards and a perpendicular magnetic shock one, i.e. 
transversal to the magnetic field. The two patterns are supposed to be semi-independent 
processes.  

To solve the magnetogasdynamics equations we have implemented a finite volume method 
together the Harten-Yee TVD scheme to calculate the numerical flux. The eight-wave 
technique introduced by Powell (1995) was used and the eigenvectors are normalized 
according to Zarachay, et al. (1994) and Roe (1996).   

We were able to calibrate the oscillatory behavior in the transverse direction and reproduce 
observational measurements. The void structures are produced by the rebounds of the 
magnetic transverse shocks in the denser external medium. The resulting interactions of 
bounced non-linear shocks compose and sustain, in accordance with observational 
characteristic times of the phenomenon, a density structure with a central void.  

The same reference values were used as initial condition to simulate the sunward 
evolution. We could qualitatively reproduce the observational data showing that initially two 
opposite shock evolving fronts are produced. One evolves towards the Sun surface until is 
absorbed, and the other is forced to rebound upwardly resembling the action of a reconnection 
site. Afterwards, the interaction of upwardly and downwardly moving perturbations forms an 
expansion wave region that lowers the density of the medium. Furthermore, a voided zone is 
formed and sustained due to the continued interfering of nonlinear waves.  
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