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Abstract. This paper presents a comparative study of the kinematics of robot manipulators between
Denavit-Hartenberg convention and the Dual Quaternion approach. The kinematics of robot manipula-
tors can be obtained from a traditional form by Denavit-Hartenberg convention. In this way, the posture
(position and orientation) of the end-effector is determined from a homogeneous transformation ma-
trix. The dual-quaternion algebra is composed of elements with 8 components and under conditions
it represents the posture of a rigid body by a minimal form. The operations and the properties of the
dual-quaternion algebra arise from the definitions of elements of a more general algebra: the Clifford
algebra that provides the necessary framework to the approach chosen in this paper. In this paper a
dual-quaternion algebra is used to model the kinematic equations of robot manipulators in a more com-
pact representation. A numerical robustness analysis is performed and the main characteristics of the
dual-quaternion approach and its performance with respect to the Denavit-Hartenberg method will be
illustrated in a case study of a 3R robot manipulator.
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1 INTRODUCTION

Robotic kinematics is commonly divided into two problems: direct kinematics and inverse
kinematics. Direct kinematics the joint variables are given and the problem is to find the position
of the end-effector. In the inverse kinematics the location of the end-effector is given and the
problem is to calculate the joint variables.

The coordinate transformations often have singularities. Singularities in parallel robots are
extremely damaging, may even reach the integrity of the robot because in this kind of structure,
in singularities positions, it wins or loses degrees of freedom (Craig, 2005; Selig, 1992).

The kinematic analysis can also be treated by means of differential kinematics. In this case,
the Jacobian matrix relates base and end-effector. Singularities occur when the Jacobian matrix
loses its full rank.

Singularity problem justifies the need of a robust and precise approach to perform the kine-
matic of robots. Most important objectives are related with avoid singularity problems, obtain
convenient equations for kinematic, and to reduce the computational cost. Dual quaternion con-
stitutes a promising tool for kinematic analysis of serial and parallel robots (Hestenes, 1999;
Murray et al., 1994; Porteous, 1995; Selig, 2000b; Sommer, 2001).

Several authors have shown advantages in the context of uses for dual quaternions in robotics
kinematics. Shoham and Ben-Horin (2009) utilize Grassmann-Cayley algebra to study sin-
gularities of parallel robot and apply their investigation to a general class of Gough Stewart
plataforms.

Agrawal (1987) and Akyar (2008) represent screw motion of a rigid body by dual quaternions
and study the Hamilton operator, which arises from dual quaternion multiplication.

Walker and Shao (1991) present a new form to solve object locating. They use a formulation
based on optimization by means of dual quaternions. The Hamilton operator also are studied
and plays a central role in their algorithm.

Horn (1987) presents a closed-form solution to the least-square problem for points. The
solution given uses unit quaternions to represent rotations. He explains how to calculate the
axis and angle of rotation from unit quaternion and four solutions to the components of the
quaternion are presented to ensure numerical accuracy.

Aspragathos and Dimitros (1998) present three approaches to solve the direct kinematics:
homogeneous transformation via Denavit-Hartenberg, Lie algebra and screw theory modeled
by dual quaternions. An important result presented by the authors is that the transformations are
performed an iterative process i+1p = h ip instead of the traditional conjugation i+1p = h ip h∗.
This algorithm is applied on a five degree of freedom robot. Sahul et al. (2008) applied the same
iterative process to analise a kind of 3R robot.

Sariyildiz et al. (2011) and Sariyildiz and Temeltas (2009) compare three inverse kinematic
methods of serial manipulators, which is applied on Stäubli RX 160L robot. In their work they
uses Paden-Kahan subproblems do derive inverse kinematic solution. Paden-Kahan subprob-
lems can be seen on Murray et al. (1994).

Pennestrì and Valentini (2009) use dual quaternion algebra for description to the screw dis-
placement and study the human motion. They use interpolation by means of dual quaternion on
the motion captured by OptiTrack System (System, 2011).

Aydin and Kucuk (2006) use dual quaternion and present a closed-form analytical solution to
the inverse kinematics of industrial robots with six degrees of freedom and spherical wrist. Gan
et al. (2008) present a a closed-form analytical solution to the inverse kinematics of a spatial 7R
robot.
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Many other areas of applications includes quaternions and dual quaternions. For example,
Kavan et al. (2008) and Vince (2008) applies dual quaternions to the computer graphic; Dooley
and McCarthy (1993); Choe (2006); Campa and Camarillo (2008) applies to track planning and
Chou (1992) to dynamic.

In this bibliography review several applications of quaternions and dual quaternions in rob-
otics were observed. Quaternions and dual quaternions appear to be flexible in this way. This
can be seen in the works of Walker and Shao (1991); Sariyildiz et al. (2011), which model screw
theory by means of dual quaternion and solve the kinematic by iterative process and other works
(Ge and McCarthy, 1991; Funda and Paul, 1990; Sommer, 2001) use dual quaternion and solve
kinematic by the most traditional conjugation operation.

An iterative process is certainly a good way to perform rigid transformations, since requires
only first transformation to be storage - the others will be calculate by the iteration. In Aspra-
gathos and Dimitros (1998) and in Sahul et al. (2008) the iterative process is done.

Sahul et al. (2008) present computational analysis of homogeneous transformations and qua-
ternions transformations in 3R robot manipulator and conclude that transformations by quater-
nions are more efficient, from a numerical operations point of view, than equivalent homoge-
neous matrices.

This paper present a study about rigid transformations by means of homogeneous matrices -
Denavit-Hartenberg method - and by means of dual quaternions method, showing the compact
form in which dual quaternions represent the kinematic equations. An analysis of computa-
tional efficiency is also performed. The necessary algebra of rigid transformations via dual
quaternions comes from a specific Clifford algebra. Due to the importance of Clifford algebra,
a general topic on this subject will be presented. Flexibility of dual quaternions promotes real
advantages in modeling kinematic of robots. Not just points and vectors but lines, planes and
kinematics pairs can be represented in Clifford algebra.

This paper is structured as follows. Section 2 presents the well-know Denavit-Hartenberg
method (DH). Section 3 presents Clifford algebra, properties and main operations. The Spinors
of tridimensional space, quaternions and dual quaternions, are shown. A general rigid body
transformation is derived from dual quaternions method (DQ). Lower kinematic pairs, points,
lines and planes are modeled in dual quaternions algebra. In section 4, the rigid transformations
found apply to solve the kinematics of the robot 3R planar. Finally, a computational efficiency
analysis is performed and conclusions are presented.

2 DENAVIT-HARTENBERG METHOD (DH)

Denavit-Hartenberg method represent each transformation by a specific convention estab-
lished by a series of definitions.

Consider a robot manipulator with n kinematic pairs (rotative and prismatic). Let Li the i-th
link and ji the i-th kinematic pair between Li−1 and Li, i = 1, 2, . . . , n. L0 is the link between
base and the first kinematic pair. After defining a reference coordinate system, a coordinate
system must be incorporated in each joint of robot manipulator, also in the end-effector, in order
to establish the coordinate transformation between links, and solve the robotic kinematics.

In summary, Denavit-Hartenberg method defines a frame Fi, i = 0, . . . , n, by:

• zi-axis: axis of the i+ 1 axis;

• xi-axis: is parallel to the common normal: xi = zi−1 × zi;

• yi-axis: follows from right-hand rule;
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• Oi: intersection between zi axis and common normal;

• O′i: intersection between zi−1 axis and common normal;

Then, a transformation from frame Fi to frame Fi−1 is defined by DH parameters (see Fig. 1):

• ai: distance from Oi and O′i measured along common normal;

• di: distance from Oi−1 and Oi′ measured along zi;

• αi: angle between axes zi−1 and zi about axis xi to be taken positive when rotation is
made counter-clockwise;

• θi: angle between axes xi−1 and xi about axis zi−1 to be taken positive when rotation is
made counter-clockwise.

Figure 1: DH parameters. Figure by Sciavicco et al. (2009).

More about Denavit Hartenberg convention can be found in Sciavicco et al. (2009), Craig
(2005), Tsai (1999) and Crane and Duffy (1998).

In general, DH parameters can be tabulated, leaving the transformations as function of the
variable θ, in the revolute case, or d, in the prismatic case. Homogeneous coordinates allow to
establish the relation between two adjacent links, connected by a kinematic pair, following four
steps:

Rotate α in Ox −→ Translate a by Ox −→ Rotate θ in Oz −→ Translate d in Oz.
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The steps above express the product of four homogeneous transformation matrix from frame Fi
to frame Fi−1, i = 1, . . . , n, that is,

i−1Hi = Tz(di)Rz(θi)Tx(ai)Rx(αi)

=


cos θi − cosαi sin θi sinαi sin θi ai cos θi
sin θi cosαi cos θi − sinαi cos θi ai sin θi
0 sinαi cosαi di
0 0 0 1

 (1)

This transformation matrix represents orientation and position of frameFi with respect to frame
Fi−1. A ortogonal characteristic of left block matrix, H(1 : 3, 1 : 3), simplifies the inversion
transformation matrix.

If axes Ozi, Ozi+1, Oxi and Oxi+1 are parallel, then αi = 0, di = 0, and the transformation
matrix from frame Fi to frame Fi−1 is simplified to

i−1Hi =


cos θi − sin θi 0 ai cos θi
sin θi cos θi 0 ai sin θi
0 0 1 0
0 0 0 1

 . (2)

This is the transformation matrix from the joint i coordinate system to joint i + 1 in the 3R
planar robot, which will be presented in details in Section 4.1. Note that the i−1Hi matrix
transformation has sparse structure.

Finally, if i−1p represents a point in coordinate frame Fi−1, then the transformation from ip
to i−1p is

i−1p = i−1Hi
ip, i = 1, . . . , n.

So, the kinematic of a robot, composed by n kinematic pairs, is

0pe =
0He

epe (3)

where
0He =

0H1
1H2 · · · n−1He (4)

is the global transformation, i.e., the composition among the transformation of the frames
F0,F1, . . . ,Fe. The coordinate systems are incorporated locally, so the end-effector is epe =
[0 0 0 1]T .

3 DUAL QUATERNION METHOD

This section presents a different way to describe the kinematics of robot manipulators. An
alternative algebra models this end. Instead of homogeneous matrices, a specific Clifford alge-
bra known as dual quaternions defines the kinematic of serial robots. The compact way dual
quaternions represent the kinematic equations and its flexibility in modeling kinematic consti-
tute some advantages.

The Clifford algebra (or geometric algebra) is a largest division algebra, associative, which
includes several algebraic systems (like complex numbers algebra, vector algebra, matrix alge-
bra, quaternions algebra, etc.) in a coherent and unified mathematical language. The geometric
entities such point, line, plane, area, volume, and even the transformations of rotation and trans-
lation are basic members of Clifford algebra (Selig, 2000a) and, thus, can be handled by a set
of algebraic operations defined in the own algebra.

Mecánica Computacional Vol XXXI, págs. 2833-2848 (2012) 2837

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



3.1 Clifford algebra basics and Spinors

There are several ways to define a Clifford algebra and the definition will depend on its
proposed (Lounesto, 2001). One way to deal with the Clifford algebra is to analyze it as vector
space on Rn. To this purpose, a basis of elements which define the Clifford space is necessary.
Also, a quadratic bilinear form defined on a linear space Rn is required to allow the calculations
with the Clifford elements.

A Clifford space is an extension of a Euclidean vector space that works with more general
concepts - multivectors - introducing the concept of oriented component, like oriented areas
and oriented volumes (Hestenes, 1999). A Clifford space becomes a Clifford algebra when a
product between multivectors, called geometric product, is defined.

Considering an orthonormal basis {e1, . . . , en} of Euclidian vector space Rn, the correspond-
ing n-dimensional Clifford space Cl(n) follows from geometric product definition. To Clifford
space, ei relates a generator element, and on two generators the geometric product produces

1. eiej + ejei = 0, if i 6= j;

2. e2i = εi

which define a Clifford algebra Cl(n). εi = +1,−1, 0 represents the signature of an generator.
Algebras with 0 signature generators are non degenerate algebras, otherwise they are degen-
erate algebras. Thus, a Cl(p, q, r) also represents an algebra Cl(n) with n = p + q + r: p,
q and r represent the amounts of generators with signature +1, −1 and 0, respectively. As a
vector space, a Clifford algebra Cl(n) has 2n basis elements: generators and all their possible
combinations. A generator conjugate is defined by e∗i = −ei.

Geometric product defines other products. For ~u and ~v in R3 space, ~u ·~v = 1
2
(u v+ v u) and

~u× ~v = 1
2
(u v − v u).

To illustrate, the Clifford algebra Cl(0, 0, 1) has e as generator, and e2 = 0. As vector space,
Clifford algebra Cl(1) has basis {1, e}. So, a general element is d = a1 + e a2. Actually there
is a isomorphism Cl(0, 0, 1) ' D - the dual numbers. The dual conjugate of d is d∗ = a1− e a2
or d∗ = a1 − ε a2 in dual numbers notation. When end-effector posture is represented by point
or plane, the dual conjugate becomes fundamental for kinematics via dual quaternions.

On the Clifford algebra context, two other spaces are also important: The non degenerate
algebra Cl(0, 2, 0), constituted by basis

{1, e1, e2, e1e2} (5)

with generators e21 = e22 = −1, and the degenerated algebra Cl(0, 3, 1), constituted by basis

{1, e1, e2, e3, e, e1e2, e2e3, e3e1, e1e, e2e, e3e, e1e2e3, e1e2e, e2e3e, e3e1e, −e1e2e3e} (6)

with generators e21 = e22 = e23 = −1 and e2 = 0.
In a general Clifford algebra, the elements ei are vectors, eiej are bivectors, eiejek are trivec-

tors, and so on. Thus, a multivector is a general element of a Clifford algebra and the number
of generators which compose a multivector defines the degree of an element.

Clifford algebras have many isomorphisms which allow multiple representations for the
group of rigid motions. One representation of the Clifford algebra is the decomposition

Cl(p, q, r) = Cl+(p, q, r)⊕ Cl−(p, q, r)
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where Cl+(p, q, r) subalgebra consisting by elements of even degree, named Spinors. Spinors
are rotors and translators and they perform rotations and translations. In spinors algebra,
the isomorphism Cl+(p, q, r) ' Cl(p, q − 1, r) produces two other important isomorphisms:
Cl+(0, 3, 0) ' Cl(0, 2, 0) = H - the quaternions space - and Cl(0, 2, 1) ' Cl+(0, 3, 1) = H2

- the dual quaternions space. These two isomorphisms, say the spinors of R3, are quaternions
and dual quaternions. So, there is no difference between bases in Eq. 5 and Eq. 6 and bases
{1, i, j, k}, {1, i, j, k, ε, iε, jε, kε}, respectively.

Two elements q1 = a0 + a1i+ a2j + a3k = a+ ~u and q2 = b0 + b1i+ b2j + b3k = b+ ~v are
quaternions, and

q1 q2 = xy − ~u · ~v + x~v + y~u+ ~u× ~v (7)

defines a quaternion product which states the quaternion algebra. The quaternion conjugate is
q∗ = a− ~u. Also, hi = qi1 + εqi2 defines a dual quaternion and

h1 h2 = q11q21 + ε(q11q22 + q12q21) (8)

is the dual quaternion product, h∗ = q∗1+ε q
∗
2 is the dual quaternion conjugate, and h∗ = q1−ε q∗2

is dual conjugate of dual quaternion conjugate.
Quaternions and dual quaternions can be used to perform rotations followed by translations.

This is done by
jp = jRi

ip jR−1i

where R is the spinor operator. The R−1 is the inverse of spinor R and it is defined by R−1 =
R∗/‖R‖.

Spinor operatorR which perform rotation from θ about an unit vector axis ~s is the quaternion

q = cos
θ

2
+~s sin

θ

2

Moreover, if ‖~s‖ = 1 then ‖q‖ = 1 and q−1 = q∗, which simplifies the operation of rotation
considerably.

Also, the spinor operatorRwhich defines rotation followed by translation (along some vector
~t) is the dual quaternion product of translational spinor hT (translator) and rotational spinor hR
(rotor)

h = hT hR =

(
1 + ε

~t

2

)
q = q + ε

(
~t

2
q

)
.

This dual quaternion spinor appears in (Selig, 2000b). If ‖h‖ = 1 then dual quaternion repre-
sents the posture of a rigid body by minimal form.

In the helical movement, ~t = d~s, where d is the distance of translation along parallel axis of
rotation - screw axis actually. So the dual quaternion of a general transformation from frame Fi
to frame Fi−1 is

hO~s
θ̂i

=



cos θ
2

(sin θ
2
)sx

(sin θ
2
)sy

(sin θ
2
)sz

−d
2
sin θ

2

(d
2
cos θ

2
)sx

(d
2
cos θ

2
)sy

(d
2
cos θ

2
)sz


(9)
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This is the dual quaternion of the kinematic transformation with arbitrary axis ~s = [sx sy sz]
T .

Quaternion and dual quaternion product perform n successive transformations by
ip = (iRi+1 · · · i+n−1Ri+n)

i+np (iRi+1 · · · i+n−1Ri+n)
∗.

Following the Denavit-Hartenberg method, transformation between frames Fi and Fi−1 is a
dual quaternion

i−1hi = hOz(di, θi) h
Ox(ai, αi) = hz

θ̂i
hxα̂i

where θ̂i and α̂i are the dual representations of the four parameters of Denavit-Hartenberg, i.e.,

θ̂i = θi + ε di and
α̂i = αi + ε ai.

The dual quaternion hz
θ̂i

performs the transformation of the frameFi−1 aboutOzi−1 axis, leaving
Oxi−1 and Oxi coincident. Likewise, hxα̂i

is performed on the frame Fi′ aligning the two axis
Ozi−1 and Ozi, bringing the frames Fi−1 and Fi coincident.

Defining the auxiliary equations

ãi = ai/2, Ai = cos(αi/2) cos(θi/2), Bi = sin(αi/2) cos(θi/2),

d̃i = di/2, Ci = sin(αi/2) sin(θi/2), Di = cos(αi/2) sin(θi/2),
(10)

a general displacement transformation, in dual quaternions algebra, reduces to

i−1hi =



cos(αi/2) cos(θi/2)

sin(αi/2) cos(θi/2)

sin(αi/2) sin(θi/2)

cos(αi/2) sin(θi/2)

−ai
2
sin(αi/2) cos(θi/2)− di

2
cos(αi/2) sin(θi/2)

ai
2
cos(αi/2) cos(θi/2)− di

2
sin(αi/2) sin(θi/2)

ai
2
cos(αi/2) sin(θi/2) +

di
2
sin(αi/2) cos(θi/2)

−ai
2
sin(αi/2) sin(θi/2) +

di
2
cos(αi/2) cos(θi/2)


=



Ai

Bi

Ci

Di

−ãiBi − d̃iDi

ãiAi − d̃iCi
ãiDi + d̃iBi

−ãiCi + d̃iAi


. (11)

This is the dual quaternion version of the rigid transformation from Denavit-Hartenberg pre-
sented in Eq. 1. The same DH parameters table establishes a serial robot kinematic by dual
quaternions, and Eq. 11 defines the dual quaternion transformations necessary to end-effector
posture.

The dual quaternion version for rotative (R), prismatic (P), cylindrical (C), helical (H), spher-
ical (S) and planar (F) kinematic pairs are

hR =



cos θ
2

(sin θ
2
)sx

(sin θ
2
)sy

(sin θ
2
)sz

0

0

0

0


, hP =



1

0

0

0

0

(d
2
)sx

(d
2
)sy

(d
2
)sz


, hS =



sin θx
2
sin θy

2
sin θz

2
+ cos θx

2
cos θy

2
cos θz

2

sin θx
2
cos θy

2
cos θz

2
− cos θx

2
sin θy

2
sin θz

2

cos θx
2
sin θy

2
cos θz

2
+ sin θx

2
cos θy

2
sin θz

2

cos θx
2
cos θy

2
sin θz

2
− sin θx

2
sin θy

2
cos θz

2

0

0

0

0


,
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hC =



cos θ
2

(sin θ
2
)sx

(sin θ
2
)sy

(sin θ
2
)sz

−d
2
sin θ

2

(d
2
cos θ

2
)sx

(d
2
cos θ

2
)sy

(d
2
cos θ

2
)sz


, hH =



cos θ
2

(sin θ
2
)sx

(sin θ
2
)sy

(sin θ
2
)sz

−d
2
sin θ

2

(d
2
cos θ

2
)sx

(d
2
cos θ

2
)sy

(d
2
cos θ

2
)sz


, hF =



cos θ
2

0

0

sin θ
2

0
dx
2
cos θ

2
− dy

2
sin θ

2
dx
2
sin θ

2
+ dy

2
cos θ

2

0


.

Using the dual quaternions algebra the kinematics is established by

0pe =
0he

epe
0h̃e, (12)

where 0pe is the dual quaternion of the end-effector position according to the parameters of ro-
tation and translation, represented in the reference frame, epe is the dual quaternion of the initial
position of the end-effector, represented in the end-effector frame, i.e., epe = [1 0 0 0 0 0 0 0]T .

The definition of h̃ depends on the element used to represent the displacement. For example,
if only the position P = (x, y, z) of the end-effector is under control, then a point has sufficient
degrees of freedom and can be used. In other words, to position control, pe = 1 + Pε and
h̃ = h∗ = q∗1 − q∗2ε. If the posture (position and orientation) of the end-effector is requested,
then line and plane have sufficient degrees of freedom and may be used. In the first case h̃ = h∗

while in the second one, h̃ = h∗.

3.2 Representation of geometric linear elements

In geometric algebra as much points as lines and planes are basic elements. Based on linear
algebra the following dual quaternion representation for points, lines and planes can be stated:

P = 1 + xiε+ yjε+ zkε

=
[
1 0 0 0 0 x y z

]T
represent the point in dual quaternion coordinates. (x, y, z) are the components of the point in
the cartesian coordinate system. To lines,

L = s+mε

= 0 + sxi+ syj + szk + 0ε+mxiε+myjε+mzkε

=
[
0 sx sy sz 0 mx my mz

]T
,

where s is the unit vector of the line, m is the moment of the line given by m = s× s0, and s0
is the position vector of an arbitrary point on the line. Planes are described by its normal vector
~n and the distance from the origin. In dual quaternion coordinates,

π = n+ dε

= nxi+ nyj + nzk + dε

=
[
0 nx ny nz d 0 0 0

]T
.

The dual quaternion representation of basic geometrical elements models rigid body trans-
formations and, therefore, the kinematics of robot manipulator.
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4 CASE STUDY

In this section the methods studied in Section 2 and 3 are applied in the 3R robot manipulator
shown in Figure 2. The links L0 (base), L1, L2 and L3 are connected by rotative joints J1, J2
and J3. The end-effector e is attached to end of link L3. There are three frames: F0, F1, F2 and
F3=Fe.

Figure 2: 3R robot.

All joints are rotative, so qi(θi, di) = (θi, 0), i = 1, 2, 3. For 3R robot the DH parameters are

0H1
1H2

2He

ai L1 L2 L3

αi 0 0 0
di 0 0 0
θi θ1 θ2 θ3

Table 1: 3R robot parameters.

4.1 Kinematics via Denavit-Hartenberg

Denavit-Hartenberg method requires a coordinate system for each joint, a coordinate system
to the end-effector and a reference coordinate system. If Fi, i = 0, 1, . . . , n are these frames,
where F0 is the base frame and Fn = Fe is the end-effector frame, then Eq. 2 gives the trans-
formation between frames Fi and Fi−1 by

i−1Hi =


cos θi − sin θi 0 ai cos θi
sin θi cos θi 0 ai sin θi
0 0 1 0
0 0 0 1

 ; i = 1, 2, 3. (13)

Thus, the global transformation explained in Eq. 4 is

0He =


cos (θ1 + θ2 + θ3) − sin (θ1 + θ2 + θ3) 0 a14
sin (θ1 + θ2 + θ3) cos (θ1 + θ2 + θ3) 0 a24

0 0 1 0
0 0 0 1

 ,
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with
a14 = L1 cos θ1 + L2 cos (θ1 + θ2) + L3 cos (θ1 + θ2 + θ3), and
a24 = L1 sin θ1 + L2 sin (θ1 + θ2) + L3 sin (θ1 + θ2 + θ3).

Therefore, the end-effector position (Eq. 3) is

0pe =


L1 cos θ1 + L2 cos (θ1 + θ2) + L3 cos (θ1 + θ2 + θ3)
L1 sin θ1 + L2 sin (θ1 + θ2) + L3 sin (θ1 + θ2 + θ3)

0
1

 . (14)

4.2 Kinematics via dual quaternion

The 3R planar robot axis are ~si = [0 0 1]T , with αi = 0 and di = 0, i = 1, 2, 3. Therefore,
from Eq. 11 and DH parameters in Table 1, the transformations via dual quaternion are

0h1 =



cos θ1
2

0
0

sin θ1
2

0
L1

2
cos θ1

2
L1

2
sin θ1

2

0


, 1h2 =



cos θ2
2

0
0

sin θ2
2

0
L2

2
cos θ2

2
L2

2
sin θ2

2

0


, 2he =



cos θ3
2

0
0

sin θ3
2

0
L3

2
cos θ3

2
L3

2
sin θ3

2

0


. (15)

The dual quaternion product determines the global transformation:

0he =



cos

(
θ1 + θ2 + θ3

2

)
0
0

sin

(
θ1 + θ2 + θ3

2

)
0

L1

2
cos

(
θ1 − θ2 − θ3

2

)
+
L2

2
cos

(
θ1 − θ2 − θ3

2

)
+
L3

2
cos

(
θ1 + θ2 + θ3

2

)
L2

2
sin

(
θ1 + θ2 − θ3

2

)
+
L1

2
sin

(
θ1 − θ2 − θ3

2

)
+
L3

2
sin

(
θ1 + θ2 + θ3

2

)
0



.

(16)
Using point representation to describe the end-effector position, Eq. 16 into Eq. 12 gives

0pe =



1
0
0
0
0

L1 cos θ1 + L2 cos (θ1 + θ2) + L3 cos (θ1 + θ2 + θ3)
L1 sin θ1 + L2 sin (θ1 + θ2) + L3 sin (θ1 + θ2 + θ3)

0


, (17)

which agree with the Denavit-Hartenberg calculations (14).
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5 COMPUTATIONAL ANALYSIS

A comparative on the storage and numerical robustness may help you to choose the most
convenient method for the application. This section presents storages and computational cost
of the methods which been studied in most literatures. The best way to do this is using sparse
matrix computations (Tewarson, 1973; Duff et al., 1989; Davis, 2006).

In sparse matrix study, only the values of the nonzeros elements and the index information
telling where each nonzero belongs in the regular array are stored.

When storing and manipulating sparse matrices on a computer, it is beneficial and often
necessary to use specialized algorithms and data structures that take advantage of the sparse
structure of the matrix. Operations using standard dense matrix structures and algorithms are
slow, and consume large amounts of memory when applied to large sparse matrices. Sparse
data is by nature easily compressed, and this compression almost always results in significantly
less computer data storage usage.

The DH method uses 4 × 4 homogeneous matrices with a specific structure, with zeros in
specific index locations which requires 12 memory locations (Aspragathos and Dimitros, 1998).
There is 6 multiplications and 4 trigonometric functions to define the matrix transformations
i−1Hi, i = 1, . . . , n in Eq. 1. To evaluate the number of numerical products from the first
transformation to the successive ones, is necessary to establish the order in which the multi-
plications are performed. The best performance is achieved when computational operations are
done from right to left. The first transformation is n−2Hn−1

n−1He, and the computations returns
the following numbers:

Fase
Definition 1st Transformation Next

0+ 20+ 23+
6∗ 29∗ 32∗

Table 2: Computational performance of general DH transformations - Eq. 1.

“∗” is used to state the multiplication and “+” to the addition operations. In n-link robot arm
there are nmatrix transformations of the form given in Eq. 1, so 29+6n+32(n−2) = 38n−35
multiplications and 20 + 23(n − 2) = 23n − 26 additions is required to determine the global
transformation and hence the end effector posture. So, a general robot with n = 3 requires 79∗
and 43+.

In dual quaternion method 8 memory locations are required. A general dual quaternion
transformation i−1hi is given in the Eq. 11 and requires 20 multiplications, four additions
and four trigonometric function calculations for its complete definition, but from the auxiliary
equations (see Eq. 10) the multiplications are reduced to 14 (A similar fashion was not found
to simplifying the computations in DH method).

Quaternion and dual quaternion multiplications play a central role in rigid body transforma-
tions then the computational cost study requires an analysis on these operations. The numerical
cost of general quaternion multiplication are 16 multiplications and 12 additions, and to dual
quaternion this numbers increase for 48 multiplications and 40 additions - see Eq.’s 7 and 8. So,
defining and performing the transformation i−1hi require the following numbers:

In this way, a n-link robot has 14n+48(n−1) = 2(31n−24) multiplications and 40(n−1)
additions to describe the global transformation by means of dual quaternions. A dual quaternion
multiplication more is necessary to complete the kinematic equation 12.

L. RADAVELLI, R. SIMONI, E. DE PIERI, D. MARTINS2844

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Fase
Definition Transformations

0+ 40+
14∗ 48∗

Table 3: Computational performance of general DQ transformations - Eq. 11.

The numbers are summarized in Table 4 and Figure 3:

DH Method DQ Method
+ 23n− 26 40(n− 1)
∗ 38n− 35 2(31n− 24)

Table 4: Computational performance of n-link robot.
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Figure 3: Computational performance of n-link robot.

6 RESULTS

A 3R planar robot has all joint axes parallel, then αi = 0 and di = 0, i = 1, 2, 3. Just two
multiplications and two trigonometric functions defines the matrix transformation i−1Hi, and
all matrices the same sparse structure as in Eq. 13. the numbers are presented in table 5:

Fase
Definition Transformations

0+ 8+
2∗ 12∗

Table 5: Computational performance of DH transformations with αi = 0 and di = 0 - Eq. 13.

In n-link robot, 2n + 12(n − 1) = 2(7n − 6) multiplications and 8(n − 1) additions are
necessary. To the 3R planar robot manipulator, n = 3, then 30 multiplications and 16 additions
are performed.
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In dual quaternions perspective, if the robot has αi = 0 and di = 0, then each transfor-
mation requires four memory locations, two multiplications and two trigonometric function
calculations to define the rigid transformation by means of dual quaternions - see Eq.15. The
kinematics exibe the following numbers:

Fase
Definition Transformations

0+ 8+
4∗ 12∗

Table 6: Computational performance of DQ transformations with αi = 0 and di = 0 - Eq. 15.

To n-link robot, the global transformation requires 4n + 12(n − 1) = 4(4n − 3) multi-
plications and 8(n − 1) additions. In a 3R planar robot manipulator, n = 3, then there are
36 multiplications and 16 additions. To describe the final position of the end-effector one more
dual quaternion multiplication is necessary. So, 48 multiplications and 24 additions are required
to complete the operation.

The numbers are summarized in Table 7.

DH Method DQ Method
+ 16 24
∗ 30 48

Table 7: Computational performance of 3R planar robot.

7 DISCUSSION

The present work agree with Aspragathos and Dimitros (1998) in the homogeneous matrices
storage cost point of view, but not for the computational cost to the end-effector posture. Also
our analysis disagree with Sahul et al. (2008), that calculates the kinematic of a kind of 3R robot
through 114 multiplications and 72 additions. To general 3R robot, the real numbers seems to
be quite different: 79 multiplications and 43 additions (see Table 4, with n = 3).

It probably the differences occurred due to the rigid transformation structure. In the homo-
geneous transformation matrix, the sparsity is an inherent characteristic of the method and it
reduces the computational consuming. So it must be considered.

To dual quaternion point of view, the authors above equates direct kinematic by an iterative
process which a simple dual quaternion product, jpi = jhi

ip, plays a central role.

8 CONCLUSION

From the main references on the subject it can be stated that spinors algebra allows to model
tridimensional displacements. In this context the dual quaternions algebra form a flexible alge-
bra in the description of rigid body transformations, geometrical elements and kinematic pairs.
Also from dual quaternions algebra, a cylindrical kinematic pair is exactly the dual quaternion
transformation operator of the helical motion, suggesting a non-decomposition of a cylindrical
joint to rotative and prismatic joints, which has been done by most researches, increasing the
number of transformations, then the number of operations.

Problems arise from numeric inconsistences in the rotational matrix, where it will be neces-
sary to renormalize its columns. Calculations are not carried out with infinite precision then the
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product of many orthogonal matrices may no longer be orthogonal, just as the product of many
quaternions many no longer be an unit quaternion (Taylor, 1979). It is not difficult to find the
nearest unit quaternion and the nearest orthogonal matrix (Taylor, 1979). The major problem
in the homogeneous matrices method due to singularities which occurs in the inverse kinematic
also to the nonlinear expressions to for the joints relations (Aydin and Kucuk, 2006).

The dual quaternions take advantages from homogeneous matrices in the storage point of
view since homogeneous matrices requires 12 numbers to represent just six degree of freedom
whereas dual quaternions just eight.

To the dual quaternions method, the results found above will not be efficient from a com-
putational point of view - see Table 7 and Figure 3 for summary. The great advantages of the
quaternions and dual quaternions due to the fact that not only points but lines and planes can
be used to represents positions and orientations in that algebra (Selig, 2000b) which provides
robot kinematics avoiding singularities (Oliveira et al., 2010; Sariyildiz et al., 2011).
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