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Abstract. In the present work, we treat theoretically the conjugate film-condensation heat transfer 
process on a vertical fin embedded in a homogeneous porous medium. Due to the finite thermal 
conductivity of the fin, the simultaneous thermal interaction between the vertical fin and the film 
condensation is presented. In order to predict the thickness of the condensate, the momentum and 
energy balance equations of the condensate and the energy equation for the fin are reduced to a non-
linear system of two ordinary differential equations with three non-dimensional parameters: the Jakob 
number, , a conjugate heat transfer parameterJa α and the aspect ratio of the fin ε . Using the limit of 

 and the boundary layer approximation for the film-condensation process, the nondimensional 
heat transfer and the overall mass flow rates of condensed fluid have been obtained as functions of the 
involved nondimensional parameters. 
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1 INTRODUCTION 

Heat transfer analysis of film condensation in a porous medium is an active area basically 
related with the thermal design of heat exchangers. Here, we are interesting to analyze the 
steady laminar film condensation over a vertical fin taking into account that the simultaneous 
thermal interaction between both regions is crucial to understand basic aspects of the heat 
transfer connected with the thermal control and performance of the fin. Since the pioneer 
paper of Cheng (1981) to study the steady laminar film condensation outside a inclined cone 
immersed in a porous medium filled with a dry saturated vapor, several corrections and 
modifications have been explored during the past decades in order to improve the simple 
Cheng's theory. Under steady state conditions, the state of the art can be found in Nield and 
Bejan (1998) and Kaviany (1995). However, one important aspect that still has not been 
considered in the specialized literature corresponds just to the analysis of this conjugate heat 
transfer problem. From this point of view, the thermal interaction occurs only between the 
vertical faces of the fin and the adjacent laminar films of the condensate. Because the aspect 
ratio of the fin defined later is very small compared with the unity, the condensation process 
on the top of the fin is negligible. The thermal interaction between the fin and the condensate 
introduces an additional difficulty: the necessity to include non-isothermal conditions for the 
fin in order to have an adequate description of the involved phenomena. Well-recognized 
works mostly deal with film condensation over isothermal walls in non-porous ambient. 
Sparrow and Gregg (1959), among others, solved numerically a set of partial differential 
governing equations for the gravity driven laminar film condensation on a vertical flat plate. 
They employed boundary layer theory and similarity methods for a plate at uniform 
temperature. Other analysis in non-porous media has been documented by Merte (1973) and 
extended by Koh et al. (1961) and Chen (1961). Although the foregoing works are essential 
contributions to the study of laminar film condensation, they were only reserved for those 
situations where the temperature at the surface of the plate has been maintained uniform. 
However, we notice that this situation is only valid for idealized cases. This was recognized 
by Patankar and Sparrow (1979) in their numerical study of laminar film condensation on a 
vertical fin attached to a cooled vertical plate or cylinder. In this work, the condensation 
process is coupled with the heat conduction within the fin. They used a similarity analysis and 
concluded that the calculated fin heat transfer is lower than the predicted value obtained by 
using an isothermal fin model. Wilkins (1980) has shown that an explicit analytical solution is 
possible for the formulation of Patankar and Sparrow (1979). These contributions reveal that 
the studies of condensation on extended surfaces form a class by themselves and, for these 
problems, an estimation of surface area requirements for a condenser using the classical 
Nusselt analysis is not appropriate. Sarma et al. (1988) studied the condensation process on a 
vertical fin of variable thickness. By matching the governing equations of the vertical fin and 
the condensed phase, through appropriate wall condition, they have analyzed the effect of fin 
geometry on condensation heat transfer and, they found that the influence of this thermal 
interaction is of primordial importance. For practically the same problem with uniform 
thickness of the fin, Chen et al. (1994) solved the coupled interaction in the presence of the 
shear stress at the liquid-vapor interface, pointing out the influence of the dimensionless 
Prandtl number, , Jacob number, on the Nusselt number, . Experimental results on 
film condensation have been correlated by 

Prc Ja Nu
Chen et al. (1987). Later, Méndez and Treviño 

(1996) solved the problem (using perturbation and numerical techniques) of laminar film 
condensation on a surface of a thin vertical plate caused by a forced cooling fluid. They 
showed that the effect of heat conduction through the plate modifies substantially the classical 
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Nusselt solution. Similar results were reported in later works (Treviño 1997 and Méndez 
1997). Recently, Kibboua and Azzi (2005) developed a numerical analysis to predict the film 
condensation on an elliptical tube immersed in a porous medium. They consider free and 
forced convection conditions.  
In order to obtain new solutions with non-isothermal conditions, in this paper we analyze the 
conjugate laminar film condensation on the external sides of a vertical fin embedded in a 
homogeneous porous medium. Here, we consider the case for which the base of the fin is 
maintained at a uniform temperature. The heat flux from the condensed phase to the fin is 
influenced strongly by the presence of the extended surface with finite thermal conductivity 
because longitudinal and transverse heat conduction effects become significant. In this work, 
we use perturbation methods and the boundary layer description for the condensed fluid flow 
to show that the heat conduction effects through the vertical fin depend on three non-
dimensional parameters: the Jakob number, , Ja α  and ε . Parameter α  represents the 
competition between the conductance of longitudinal heat conduction in the fin and the 
conductance for transverse heat convection through the condensate and ε  is the aspect ratio 
of the fin. We develop an analysis for all values of α  and in some cases; we compare the 
analytical solutions with the results obtained using numerical techniques. 

2 ORDER OF MAGNITUDE ANALYSIS 

The physical model under study is shown in Figure 1. A thin vertical fin of length  and 
thickness  with , is immersed in a homogeneous porous medium filled with a 
saturated vapor at temperature

L
2h 2h L�

sT . The fin’s base is maintained at temperature 0 sT T< , thus 
generating a heat flux from the saturated vapor present into the porous medium to the body of 
the fin and creating thin vertical condensed films on both vertical sides of it. We neglect the 
condensation effects over the top of the fin due to the involved geometric scales and the top of 
the fin is adiabatic. Furthermore, the existence of a two-phase zone lying between the 
condensate and vapor regions is not taken into account. It is well known that for gravity-
dominated flows, the two-phase region is practically absent. Elaborate analysis to consider 
this zone is widely studied and can be found elsewhere, (Nield 1998 and Kaviany 1995).  
Due to the symmetry of the physical model, we consider only for convenience the right hand 
side of this configuration. Therefore, we select the upper right corner of the fin as the origin 
of the coordinate system, whose axis points in the direction normal to the vertical fin and its y
x  axis points down in the longitudinal direction of the fin, i.e., in the direction of the gravity 
vector. Taking into account that the fin has a finite thermal conductivity, heat conduction 
effects exist in both longitudinal and transverse coordinates ( x and , respectively) through 
the extended surface  

y
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Figure 1: Physical model sketch 

 
An order of magnitude estimate (see for example Bejan 1984) is useful to obtain the 
nondimensional parameters and the relevant working regimes. Assuming a thin layer of 
condensing fluid of thickness cδ  (with c Lδ � ), the global energy balance can be written as 

 ,m c c w wL
fg c c c

c

L T h T h U
L

λ λ ρ δ
δ

∆ ∆∼ ∼  . (1) 

Here wλ and ,m cλ are the thermal conductivities of the fin’s material and of the porous medium 
saturated with condensate, respectively. cT∆ is the characteristic temperature drop at the film 
condensation and is the characteristic longitudinal temperature difference along the fin. 
Both temperatures differences are unknowns and must be determined as a part of this order of 
magnitude analysis. corresponds to the latent heat of condensation of the saturated vapor, 

wLT∆

fgh

cρ is the density of the condensed fluid and denotes the characteristic longitudinal velocity 
of the condensate. The order of magnitude of this characteristic velocity can be easily 
obtained from the Darcy’s velocity and in this case 

cU

( ) /c c vU K g cρ ρ µ−∼ , where  is the 
permeability of the porous medium,  is the gravity acceleration, 

K
g cµ is the dynamic 

coefficient of viscosity and cρ and vρ are the densities of the condensate and saturated vapor, 
respectively. For simplicity, we will follow a simple Darcian formulation to describe the 
hydrodynamics of the condensate. However, the present analysis can be readily extended to 
include non-Darcian models. Combining the first and third terms of the relationship (1), 
therefore, we show that a representative global thickness of the condensate layer related to the 
length of the fin is of order 
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1/ 2

,

(,  with    and   .c c c c

fg c m c

T c T KgLJa Ja C Ra
L Ra T h
δ ρ

µ α
∆ ∆⎛ ⎞∼ = =⎜ ⎟∆⎝ ⎠

)vρ−  (2) 

Ja corresponds to the well-known Jakob number defined as the ratio of the heat conducted 
through the liquid to the latent heat released during the condensation process. Ra  is the local 
Rayleigh number, which was first introduced by Cheng (1981) and has been identified as the 
effect of the equivalent buoyancy-induced fluid motion on film-condensation heat transfer 
process, (Incropera 1996).  and0sT T T∆ = − ,m cα  is the effective thermal diffusivity of the 
porous medium saturated with condensate, defined by , ,( /m c m c c cc )α λ ρ=  and is the specific 
heat capacity of the condensate.C is a numerical constant adopted to normalize the 
nondimensional condensate thickness,  

cc

2C =  . In general,  and  (1Ja� 1Ra� Incropera 
1996), and thus we can use the boundary layer approximation for the condensed flow in the 
limit . In the above relationship (2), the ratio (/Ja Ra → 0 / )cT T∆ ∆  is unknown and 
therefore with the aid of the order of magnitude analysis must be determined. Making a heat 
flux balance at the vertical side of the fin and obtaining the total temperature drop, ,  from 
the condensed fluid to the base of the fin, we can then write that 

T∆

 , and 1 ,c w c wL
m c w

c

T T T T
h T T

λ λ
δ
∆ ∆ ∆ ∆

∼ +
∆ ∆

=  (3) 

where is the characteristic transverse temperature difference across the fin. Combining 
the above relationships together with the first two terms of the relationship (1), with 

wT∆

cδ  given 
by the relationship (2), we obtain that the temperature drop at the condensed fluid,    is 
related to the total temperature drop,  

cT∆
T∆ ,  through 

 
1/ 21 1c cT T

T Tα
∆ ∆⎛ ⎞+ =⎜ ⎟∆ ∆⎝ ⎠

, (4) 

similarly 

 
1/2 1/22 1and .w c wL cT T T T

T T T T
ε
α α

∆ ∆ ∆ ∆⎛ ⎞ ⎛ ⎞∼ ∼⎜ ⎟ ⎜ ⎟∆ ∆ ∆ ∆⎝ ⎠ ⎝ ⎠
 (5) 

where the parameters α  and ε  are defined by 

 
1/ 2

,

and   .w

m c

h Ja h
L Ra L

λα
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

ε =  (6) 

The parameter α  represents the competition between the heat conducted by the fin in the 
longitudinal direction to the heat conducted through the condensate film. Therefore, this 
parameter defines clearly the conjugate character of the problem. In general, we can 
distinguish three relevant limits depending on the assumed values ofα .  For  1α >>  , the heat 
conducted through the condensate film has most of the thermal resistance and longitudinal 
heat flow through the fin has negligible resistance. Thus, no temperature gradients of 
importance arise in the longitudinal direction. On the other hand, for  1α <<  , resistance to 
heat flow through condensate film is much smaller than heat conduction in the fin in the 
longitudinal direction, producing large longitudinal temperature gradients on the plate. We 
assume that the aspect ratio of the plate, /h Lε = , is very small compared with unity. The 
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ratio 2/α ε  can assume in general finite arbitrary values. For large values of this parameter 
compared with unity, we named this limit as the thin thermally fin regime. This case 
corresponds to the majority of the practical applications. Therefore, from the order 
relationships (4), (5) and (6), we obtain the following distinguishable limits 

 
21 , , 1,  for  wL w cT T T

T T T
ε α

α α
∆ ∆ ∆

∼ ∼ ∼
∆ ∆ ∆

�1 ,  (7) 

 21, , 1,  for 1wL w cT T T
T T T

ε∆ ∆ ∆
∼ ∼ ∼

∆ ∆ ∆
α ∼                                         (8)                      

 2 21, , ,  for 1 ,wL w cT T T
T T T

ε α α∆ ∆ ∆
∼ ∼ ∼

∆ ∆ ∆
�  (9) 

which validates the foregoing comments.  

3 MATEMATHICAL FORMULATION 

In this section, we present the nondimensional governing equations needed to solve the 
conjugate film-condensation problem. Based on the above order of magnitude analysis, we 
introduce the following non-dimensional variables 
 
Vertical fin: 

 
0

( , )( , )  ;  ,  ,s w
w

s

T T x y x y hz
T T L h

θ χ χ− z +
= = =

−
 (10) 

Condensed flow: 

 
( )1/ 2

0

( , ) ( )( , )  , ( )  ,  ;
( / )

s c c
c c c

s c

T T x y x y
T T L Ja Ra x

δθ χ η χ η
δ

−
= ∆ = =

−
 (11) 

In this form, the heat conduction equation for the fin can be written as  

 
2 2

2 2 2

1 0  .w w

z
θ θ
χ ε

∂ ∂
+ =

∂ ∂
 (12) 

Herein, the variables with the subscript  denote the variables of the condensed phase, those 
with  denote the variables of the fin. We supposed for simplicity that the top of the fin was 
adiabatic. Thus, the corresponding boundary conditions in the longitudinal direction at the tip 
(

c
w

0χ = ) and the base ( 1χ = ) are given by 

 
0

(0) 0  and  (1, ) 1w
w z

χ

θ θ
χ =

∂
= ∆ = =

∂
 (13) 

and for the transversal direction 

 
2

0 1 0

10 and  .
c

w w

z z cz z
η

θ θ θε
α η= = =

∂ ∂ ∂
= =

∂ ∂ ∆ ∂
c  (14) 

Introducing the non-dimensional stream function  cf  defined by 
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( )

( )
1/ 2

,,

;   ,
( )/

cc c
c

c m c cm c

ff fu Lvu v
RaJa dRa L

η
η α χ χ ηα

∂ ∆∂ ∂∆
= = = = − +

∂ ∂
d

∂
 (15) 

where u  and  v  represent the longitudinal and transverse velocity components in physical 
units, respectively. The momentum and energy equations for the condensed liquid using the 
boundary layer approximation, take the form 

 1c

c

f
η

∂
=

∂
 (16) 

 
2

2
2

1 .c c c c
c

c c

f dJa f
d

θ θ θ
η χ χ η χ

⎧ ⎫∂ ∂ ∂ ∂ ∂∆
= ∆ − −⎨∂ ∂ ∂ ∂ ∆ ∂⎩ ⎭

c

c

θ
η ⎬

  

 (17) 

The boundary conditions associated with the condensed fluid governing equations are 

 ( , 0) ( ) ( , 0) 0 at 0c w c cfθ χ θ χ χ η− = = =  (18) 

 ( , 1) 0 at 1 .c cθ χ η= =  (19) 

The normalized non-dimensional thickness of the condensed film ,∆  is unknown and must be 
obtained from the analysis. The energy balance at the condensed-vapor interface gives the 
evolution of  as ∆

 
2

1

.
c

c

c

d
d

η

θ
χ η

=

∂∆
= −

∂
 (20) 

The solution of the problem (12)-(20), should provide 

( , : , , ) .w w z Jaθ θ χ α ε=  

In the remainder of this paper we classify the solutions according to the assumed values of ,α  
taking advantage of the fact that, in general,  and Ja 2ε  are very small compared with unity. 
However, for arbitrary values of these parameters, the momentum equation has a trivial 
solution given as ( ) 1 .c cf η =  Therefore, under small  and Ja ε , the right hand side of 
equation (17) can be dropped, and the solution of the energy equation for the condensate 
liquid yields 

 ( ,0)( 1 ) .c w c  θ θ χ η= −  (21) 

A suitable nondimensional heat flux  q′′   at the wall or reduced number for this problem 

rNuχ  is 

 
1/ 2

, 0 0

( , 1)1  .
( )

c

c w
r

w c s c

q L JaNu
T T Raχ

η

θ θ χ
λ η

=

′′ ∂⎛ ⎞≡ = − =⎜ ⎟− ∆ ∂⎝ ⎠ ∆
 (22) 

Thus, the non-dimensional energy balance equation (20) at the interface vapor-condensed 
fluid transforms to 

 
2

( , 1) .w
d
d

θ χ
χ
∆

=  (23) 
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4 THERMALLY THIN FIN REGIME 

The thermally thin wall regime corresponds to the case . In this regime the 
temperature variations in the transverse direction in the plate are very small compared with 
the global temperature difference as predicted by the second of the relationships (7). 
Therefore, in this regime the temperature of the plate is assumed to depend only in the 
longitudinal coordinate. The heat conduction equation for the fin can be integrated along the 
transverse coordinate and after applying the boundary conditions (14) together with the 
nondimensional condensed fluid temperature profile given by equation (21), we obtain  

2/α ε �1

 
2

2 .w wd
d

θ θα
χ

=
∆

 (24) 

In the following subsections, we study the limiting cases of  1α >>   and  1α <<  , for the 
thermally thin wall regime. 

 
4.1 Analysis for the limit α>>1 

The system of equations (23)-(24) and the corresponding boundary conditions (13), can be 
solved by applying a regular perturbation technique, using the inverse of  α   as the small 
parameter of expansion. For very large values of the parameter  α  , the non-dimensional 
temperature of the plate, wθ , changes very little (of order of  1α − ) in the longitudinal direction 
as shown in relationship (7). In order to obtain a solution in this limit, we assume that the 
non-dimensional temperature of the plate as well as the non-dimensional condensed layer 
thickness can be expanded in the form 

  (25) 0
1

( ) ( ) ( ) ,j
w

j

θ χ θ χ α θ χ
∞

−

=

= + ∑ j

and 

 0
1

( ) ( ) ( ) .j
j

j

χ χ α χ
∞

−

=

∆ = ∆ + ∆∑  (26) 

Introducing these relationships into equations (23) and (24), we obtain after collecting terms 
of the same power ofα , the following set of equations 

 
2 2

00 0
02 0,  , for d d

d d
θ θ α
χ χ

∆
= =  (27) 

 ( )2
0 1 101

12
0

2
,  , for 

dd
d d

θθ θ α
χ χ

−∆ ∆
= =

∆
 (28) 

 
( )22

0 2 1 202 1 1
22

0 0 0

2
,    

dd
d d

θθ θ , forθ α
χ θ χ

−
∆ ∆ + ∆⎛ ⎞∆

= − =⎜ ⎟∆ ∆⎝ ⎠
 (29) 

etc., with the following initial and boundary conditions 

 0
0

(0) (1) 1 0 , for all i
i

d i
d χ

θθ
χ =

∆ = − = =  (30) 
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and  

 (1) 0 , for all 0.i iθ = >  (31) 

Equations (27) can be integrated with the corresponding initial and boundary conditions (30) 
giving that 0 1θ =  and 1/ 2

0 .χ∆ =   Introducing these solutions for 0θ and  into equations 
(28) and integrating twice for the energy equation and once for the condensed layer thickness 
equation, , we obtain after applying the appropriate initial and boundary conditions 

0∆

1∆

 ( )3 1
2 2

1 1
4 2 21 ,
3 3 5

2θ χ χ⎛= − ∆ = −⎜
⎝ ⎠

χ ⎞
⎟ , (32) 

and in a similar way for the second order terms 
 

 3 3/ 2 1/ 2 7 / 2 2
2 2

8 8 32 2 1 8,  
45 9 45 15 75 45

θ χ χ χ χ χ χ= − + ∆ = − + −( ) .  (33) 

Therefore, up to the second order, the condensed layer thickness is given by 

 1/ 2 3/ 2 3 1/ 2 3/ 2 3
2

2 2 2 1 41 1 1 ( ) (
3 5 15 10 3

Oχ χ χ χ χ
α α

−⎡ ⎤⎛ ⎞ ⎛ ⎞∆ = − − + − + − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
),α  (34) 

and the non-dimensional plate temperature is 

 ( )3/ 2 3/ 2 3 3
2

4 32 5 11 1 1 (  
3 45 4 4w Oθ χ χ χ
α α

−⎛ ⎞= − − + − + +⎜ ⎟
⎝ ⎠

) .α  (35) 

The leading term on the right-hand side of the above equations reduces to the classical Cheng 
(1981) solution for an isothermal plate immersed in a saturated-vapor porous medium. 
In order to complete this subsection, we present the method used for the numerical integration 
of the governing equations. We transform the boundary value problem to an initial value 
problem by introducing the following non-dimensional variables 

 
2

2/3 2/3,  χζ φ
α α

∆
= = .  (36) 

Then the equations transform to the parameter-free form 

 
2

2 1/ 2 and ,w w
w

d d
d d

θ θ φ  θ
ζ φ ζ

= =

l

 (37) 

with (0)wθ θ= . The initial conditions are  

 0 at 0 ,w
w l

d
d
θ θ θ φ ζ
ζ

= − = = =  (38) 

for any initial value of  1lθ <  . The calculations are performed until  ( ) 1w fθ ζ =  is reached. 

The value of ( )f lζ θ dictates the appropriate value of α as 3/ 21/ fα ζ= . The asymptotic solution 
for values of  0ζ →  , needed to start the numerical integration, takes the form  

 1/ 2 3/ 24 ...,    for 0 .
3w l l lθ θ θ ζ φ θ ζ ζ∼ + + ∼ →  (39) 
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As the value of  α  decreases, lθ  also decreases, reaching the value of 0lθ =  for a critical 
value of α , *α , to be obtained as follows. For this critical value ofα , one can verify that the 
equations have the following closed form solutions 

 3 41 1and , for  .
9 36wθ ζ φ ζ α α ∗= = =  (40) 

Here  and thus, . Therefore, the nondimensional thickness 
of the condensed layer at the base of the fin gives 

1/39 2.0801fζ = = 3/ 21/ 1/ 3fα ζ∗ = =

 1 1 .
6 2f α

∗
∗∆ = =  (41) 

This last result predicts a smaller thickness than the corresponding without porous medium 
given by Chen (1961).  

4.2 Analysis for the limit *α α<  

For small values of α , such that α α ∗< and , the thermally thin fin limit is still 
valid. In this case, a boundary layer develops close to the base of the fin. In order to study the 
condensation process for very small values of

2/α ε >> 1

α , we introduce the following stretched 
variables 

 
2

2/3 2 /3

1 ,  χξ φ
α α
− ∆

= = ,  (42) 

transforming the governing equations to  

 
2

2 1/ 2 and ,w w
w

d d
d d

θ θ φ θ
ξ φ ξ

= =  −  (43) 

with the boundary conditions 

 1  at  0  and  0 ,  0  for   .w wθ ξ θ φ ξ= = → → → ∞  (44) 

Equations (43) can be written in the phase-space variables as  

 
22

1/ 2
2 1 ,w w

w
d d
d d

θ θφ θ
φ φ

⎡ ⎤⎛ ⎞
+ =⎢ ⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
⎥  (45) 

with the initial condition  (0) 0wθ = , which also guarantees the adiabatic condition. The 

solution can be obtained in closed form as 3/ 44 /wθ φ= 6 , or using the second of the 
equations (43), we also obtain 

 
4 3

1/ 4 1/ 41 4and .
6 6f w fφ φ ξ θ φ ξ⎡ ⎤ ⎡= − = −⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦

1  
6

⎤
⎥  (46) 

Here fφ  is the nondimensional value at the base of the fin and is given 

by 4/3( 6 / 4) 0.52002fφ = = . The nondimensional thickness of the condensed layer is 

then 1/3 1/ 2
f fα φ∆ = , for values of *α α≤ . For this case, the condensation layer begins at a very 
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well defined position of the fin, 1/ 4 1/ 46 6(0.52005) 2.0801wet fξ φ= = = . At  wetξ ξ>    

( 2/31wet wetχ α ξ= − ) there is not any condensed fluid at all. The portion of the fin in contact 
with condensed fluid decreases as the value of α  decreases. The fin wets completely for 
values ofα α ∗≥ . 

5 RESULTS  

The analytical and numerical results for the thermally thin fin regime ( ) are 
presented in this section through Figures 2 to 7. For instance, Figures 2 and 3 show some 
comparisons between analytical and numerical solutions for the nondimensional thickness of 
the condensed film, , and for the nondimensional temperature of the fin, 

2/α ε >> 1

∆ wθ , as a function 
of the nondimensional coordinate χ  and different values of α .  Specifically, in Figure 2 the 
differences between both solutions are indistinguishable up to values ofα  order 2. In the 
range1/ 3 2α< < , we have only plotted the numerical result for 0.5α =  due to that the 
perturbation solution stops being valid in this domain.  In addition, the corresponding 
analytical solution for the case of , is showed and also is 
indistinguishable of the numerical solution. This last relationship for can be readily 
obtained with the aid of equations (36) and (40) with . Furthermore, for large values 
of 

* * 21/ 3  ( / 2)α α χ= = ∆ =
*∆

* 1/ 3α =
α  both solutions tend to the well-known Cheng (1981) solution 1/ 2χ∆ ∼  (isothermal fin, 

with 1wθ ∼ ). In Figure 3, the corresponding analytical and numerical temperature profiles in 
the vertical fin are also showed as function of the nondimensional coordinate χ  and different 
values of the conjugate parameterα . For decreasing values ofα , the temperature variations 
along the longitudinal coordinate are larger, indicating that the temperature of the fin is nearer 
to the saturated vapor temperature. In this case, the condensation process is limited, as will be 
showed lines below. Just for the critical value ofα ,  the temperature at the top of the 
fin will be exactly the same as the temperature of the saturated vapor, 

1/ 3α ∗ =
( 0) 0wθ χ = = . Using 

equations (36) and (40) with this critical value of the parameterα can readily show that 
* *( , )w

3θ χ α χ= . Again, both solutions are indistinguishable. 
For values of α α ∗≤ , Figure 4 shows the limiting analytical thickness and temperatures 
profiles, given by equations (46), as functions of the nondimensional coordinateξ . In this 
figure, it is clearly showed the dry zone of the fin, which corresponds to values of 2.08ξ ≥ . 
On the other hand, in physical units, the mass flow rate of condensed fluid per unit length at 
the bottom of the fin is then given by  

 ( )1/ 2
, ( )c m c fm RaJaρ α′ = α∆ , (47) 

where the numerical and analytical solutions for f∆ are plotted in Figure 5 in the thermally 
thin fin approximation. Here, the two-term asymptotic solutions for  1α >>  and the closed 
form solution for  α α ∗≤  are also included. The two-term asymptotic solution, gives 
acceptable results for values of 0.6α ∼ , while the numerical solution for 1α >>  offers good 
results up to values of . For * 1/ 3α = α α ∗<  the analytical solution given in section 4.2 
completes the solution. Finally, If we define the fin efficiency as the ratio of the actual 
condensate mass flow rate to that obtained by using the isothermal wall (α → ∞ ), then 
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( )

,f
m

m
η

∞

′
= = ∆

′
 

and by the results of f∆ obtained in Figure 5 can be readily appreciated that the efficiency of 
the fin decreases for decreasing values of the conjugate parameter .α  Finally, in Figure 6 we 
have plotted the average reduced Nusselt number defined as 

 
1 1

0 0

( ,1)w
r rNu Nu d dχ

θ χχ χ= =
∆∫ ∫ ,  (48) 

as a function of the parameterα , using only the numerical results only valid up to the critical 
value of . Combining the results of Figures 5 and 6, we obtain obviously that for 
decreasing values of the parameter

* 1/ 3α =
α  the nondimensional heat transfer is increased due to the 

reduction of the thickness of the condensate. 

6 CONCLUSIONS 

In this work, we studied analytically and numerically the conjugate heat transfer film-
condensation process of a saturated vapor on a vertical conducting fin immersed in a porous 
medium, considering that the base of the fin is found at temperature lower than the 
temperature of saturated-vapor porous medium. This boundary condition modifies the results 
obtained in previous works, where the effect of the longitudinal heat conduction through the 
fin has been neglected. In this particular case, the longitudinal heat conduction must be 
retained for any value of the parameterα . Furthermore, there is a critical value ofα , 

, where the temperature at the top of the fin reaches the temperature of the 
condensed vapor. For values of

1/ 3α ∗ =
α α ∗< , there is a portion of the fin which remains dry. The 

total mass flow rate of condensed fluid per unit length has been obtained for all values of the 
involved parametric space and the influence of the parameterα is to reduce the efficiency of 
the fin for decreasing values of this conjugate parameter. 
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7 FIGURES 
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Figure 2: Nondimensional thickness of the condensed film, ∆ , as a function of the nondimensional 
longitudinal coordinate χ , for different values of the conjugate parameterα (black symbols denotes numerical 

solutions and white symbols are analytical solutions). 
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Figure 3: Nondimensional temperature of the fin, wθ , as a function of the nondimensional longitudinal 
coordinate χ , for different values of the conjugate parameterα  (black symbols denotes numerical solutions and 
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white symbols are analytical solutions). 
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Figure 4:  Nondimensional temperature,  wθ   (■ symbol) and modified thickness of the condensed film, φ  

(○ symbol) as a function of the nondimensional inner coordinateξ  forα α< ∗ . 
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Figure 5: Nondimensional thickness of the condensed film at the base of the fin, f∆ , as a function of the 

conjugate parameterα . The asymptotic solutions for  1α >>  and  α α ∗<  are also plotted. 
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Figure 6:  Average reduced Nusselt number as a function of the conjugate parameterα . 
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