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Abstract. Electromechanical systems deal with the mutual interaction between electromagnetic and
mechanical parts. In this paper, it simply means the connection of a DC motor and a mechanical part
by some mechanism. This interaction is called coupling. The mechanical and the electromagnetic sub-
systems interact. To properly represent the dynamics of a coupled system, it is necessary to properly
characterize this interaction between the parts. Any change in the modeling of the interaction affects the
behavior of the entire system. Typically, the coupling between electromagnetic and mechanical parts is
expressed by a set of coupled differential equations. The dynamics of the coupled system is given by
an initial value problem comprising this set of coupled differential equations. In this paper, we discuss
three mistakes found in the literature on electromechanical systems. The three mistakes somehow de-
couple the system. They maim the initial value problem of the coupled system, in a way that it looses
one differential equation and the initial condition related to the lost equation. The remaining equations
represent only the dynamics of the mechanical part. The dynamics of the motor is ignored in a way that
the electromagnetic part is decoupled from the system. Apparently they are useful hypotheses, since
they simplify the problem greatly. However they lead to wrong results, as is shown in this paper. To
exemplify how the hypotheses mislead and change the dynamics, numerical simulations are performed
for an simple electromechanical system. Observing the results, one sees, immediately, the inadequacy of
them. The oldest of these misleading hypotheses was first made at least 75 years ago still persist in the
literature. It seems that lately these hypotheses are used more than ever.
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1 INTRODUCTION

Coupled systems present an interesting behavior characterized by the mutual influence be-
tween the parts of the system Dantas et al. (2014), Dantas et al. (2016), Clerkin and Sampaio
(2017), Manhães et al. (2018). Each part of the system affects the behavior of the other, i.e.,
they interact. To properly represent the dynamics of a coupled system, it is necessary to properly
characterize this interaction between the parts. Any change in the modeling of the interaction
affects the behavior of the entire system.

This paper focus on a specific type of coupling, an electromechanical coupling. We analyze
systems with an electromagnetic and a mechanical part coupled as sketched in Fig. 1.

Figure 1: Sketch of the mutual interaction between electromagnetic and mechanical parts of an electromechanical
system.

The dynamics of these systems are described by an initial value problem (IVP) comprising
a set of coupled differential equations. Observe that the configuration space of an electrome-
chanical system must contains electromagnetic as well as mechanical variables. Mechanical
variables only cannot describe the coupling.

In this paper, we discuss three mistakes found in the literature on electromechanical systems.
The first one appears in classical books since at least 1943, as Rocard (1943), Kononenko (1969)
and Nayfeh and Mook (1979), and has being propagated in several papers, see, for exemple,
the recent works Avanço et al. (2017), Rocha et al. (2018) and Gonçalves et al. (2016). This
first mistake is about a hypothesis that affirms that the coupling between the electrical and
mechanical part can be represented by a linear function. With simple numerical examples, we
show that this hypothesis can mislead the results. It is valid only if the electromechanical system
reaches a steady state, in which the electromagnetic and mechanical variables do not vary with
time (they are constant). In this case, the dynamics vanishes, and the coupling is reduced to a
static problem. If a steady state is not reached, the coupling varies with the coupling conditions,
it is not a functional relation and depends on the initial conditions. To better understand the
difference between the static and dynamical cases, see the Figs. 3.1 and 5.1. The lack of a
functional relation is the essence of the coupling.

The second mistake discussed can be frequently found in the literature, please see Danuta and
Maciej (2006), González-Carbajal and Domínguez (2017), Gonçalves et al. (2014) and Cveti-
canin et al. (2017). These books and papers supposedly deal with electromechanical systems,
however they do not even mention electromagnetic variables, as current and electrical charge.
They use only mechanical variables to describe the system. One form this mistake appears
is when one wants to construct a Lagrangian for an electromechanical system using only me-
chanical variables, as happens in Danuta and Maciej (2006) and Gonçalves et al. (2016). They
formulate a Lagrangian only for the mechanical part, disregarding the electrical subsystem.
It is interesting to observe that in Cveticanin et al. (2017) terms related with electromagnetic
variables just appear in the introduction and in the penultimate chapter of the book. In the
mathematical models, there is no mention of them.
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The third mistake discussed is a hypothesis found in the literature that affirms that it is pos-
sible to neglect a term in the initial value problem that describes the dynamics of an electrome-
chanical system without changing the interaction between the electromagnetic and mechanical
parts. The hypothesis is based only on parameters values, it does not depend on the system
being studied and, also, does not depend on the type of electromechanical system analyzed.
Apparently it is a useful hypothesis, since it simplifies the problem greatly. However it can
lead to wrong results, as is shown in this paper. This hypothesis leads to the decoupling of the
subsystems. The dynamics of the electromagnetic part is ignored, in a a way that the the con-
figuration space is maimed (it just has the variables of the mechanical part). To exemplify how
the hypothesis misleads and changes the dynamics, simulations are performed for an electrome-
chanical system neglecting the term and not neglecting it Lima and Sampaio (2018). Comparing
the results, one sees, immediately, the big difference between the two dynamics.

2 GEOMETRICAL CONSTRAINT BETWEEN THE ELECTROMAGNETIC AND ME-

CHANICAL PARTS

Typically, in an electromechanical system, there is a geometrical constraint between the
electromagnetic and mechanical parts. To illustrate, we present two simple electromechanical
systems composed by a cart coupled to a DC motor, see Figs. 2 and 2. The difference between
these two systems is the mechanism that couples the electromagnetic and mechanical parts.
In Fig. 2, it is shown a mechanism called scotch yoke and in Fig. 2, the slider crank mecha-
nism. Both of them relate the horizontal cart motion x with the motor rotational motion α, i.e.,
introduce a geometrical constraint between these two variables.

(a) (b)

Figure 2: (a) Electromechanical system with a scotch yoke mechanism. (b) Electromechanical system with a slider
crank mechanism.

In this work, we focus on the system with the scotch yoke mechanism. To translate the
results to the other case is trivial. Due to the system geometry, x(t) and α(t) are related by the
constraint

x(t) = d cos (α(t)) . (1)

3 DYNAMICS OF AN ELECTROMECHANICAL SYSTEM

To determine the dynamics of the electromechanical system sketched in Fig. 2, first we
derive the equations of the dynamics of each part of the system, electromagnetic (DC motor)
and mechanical (cart). After that we couple the equations by the coupling torque that exists
between the parts and the geometric constraint given by Eq. (1).

The mathematical modeling of DC motors is based on the Kirchhoff’s law Karnopp et al.
(2006). The dynamics of a DC motor is given by the following initial value problem (IVP).
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Given a source voltage ν, find (α, c) such that, for all t > 0,

lċ(t) + r c(t) + keα̇(t) = ν , (2)

jmα̈(t) + bmα̇(t)− ke c(t) = −τ(t) , (3)

with the initial conditions

α̇(0) = α̇0 , α(0) = α0 , c(0) = c0 , (4)

where t is the time, c is the electric current, α̇ is the angular speed of the motor, l is the electric
inductance, jm is the inertia moment of the motor, bm is the damping ratio in the transmission
of the torque generated by the motor to drive the coupled mechanical system, ke is the motor
electromagnetic force constant and r is the electromagnetic resistance. The available torque
delivered to the coupled mechanical system is represented by τ , that is the component of the
torque vector τ .

3.1 Steady state: solution of a static problem

Assuming that τ and ν are constants, the motor reaches a steady state in which the electric
current and the angular speed approach constants. By Eqs. (2) and (3), the angular speed of the
motor shaft and the current in steady state, respectively α̇steady and csteady, are written as

α̇steady =
−τ r + ke v

bm r + k2
e

, csteady =
v

r
−

ke
r

(

−τ r + ke v

bm r + k2
e

)

. (5)

Remark that if τ and ν are constants, there is a functional relation between α̇steady and τ and
between α̇steady and csteady. The graphs of the curves are shown in Figs. 3.1 and 3.1. These
graphs are usually called motor map and usually are provided by engine manufacturers.
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Figure 3: Graph of α̇steady (a) as function of τ and, (b) as function of csteady for different values of ν. The values of
jm, ke, r and bm are given in Table 1.

3.2 Transient state: solution of a dynamical problem

When τ or ν are not constants, the angular speed of the motor shaft and the current do
not reach a steady state. Figures 3.2 and 3.2 show the results considering for example that
τ = τ0 cos (ω t) and ν constant.
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Figure 4: (a) Angular speed of the motor, without mechanical subsystem attached, and (b) current over time. It is
considered that ν = 0.1 V, τ0 = 0.075 N/m and ω = 10 rad/s. The values of jm, ke, r and bm are given in Table 1.
It is considered α̇(0) = 0 rad/s, α(0) = 0 rad and c(0) = ν/r Amp.

Another situation in which α̇ and c do not reach a steady state is when a mechanical system
is coupled to the motor. In this case, α̇ and c vary in time in a way that the dynamics of the
motor will be influenced by the coupled mechanical system. To model the coupling between the
motor and the mechanical system, the motor shaft is assumed to be rigid. Thus, the available
torque vector to the coupled mechanical system, τ , can be written as

τ (t) = d(t)× f(t) , (6)

where d = (d cosα(t), d sinα(t), 0) is the vector related to the eccentricity of the pin,
and where f is the coupling force between the DC motor and the cart. Assuming that there is
no friction between the pin and the slot, the vector f only has a horizontal component, f (the
horizontal force that the DC motor exerts in the cart). The available torque τ is written as

τ(t) = −f(t) d sinα(t) . (7)

Due to constraints, the cart is not allowed to move in the vertical direction. The cart mass is m
and the horizontal cart displacement is represented by x. Since the cart is modeled as a particle,
it satisfies the equation

m ẍ = f(t) . (8)

Observe that Eqs. (2) and (3) are related with the dynamics of the electromagnetic part (DC
motor) and Eq. (8) is related with the dynamics of the mechanical part (cart). Substituting
Eqs. (6) to (1) into Eqs. (2) and (3), we obtain the initial value problem for the coupled system,
i.e., the motor-cart system, that is written as follows. Given a source voltage ν, find (α, c) such
that, for all t > 0,

l ċ(t) + r c(t) + ke α̇(t) = ν , (9)

α̈(t)
[

jm +md2(sinα(t))2
]

+ α̇
[

bm +md2α̇(t) cosα(t) sinα(t)
]

− ke c(t) = 0 , (10)

with the initial conditions

α̇(0) = α̇0 , α(0) = α0 , c(0) = c0 . (11)
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Observe that the dynamics of the coupled system is given by an initial value problem comprising
a set of two coupled differential equations. Observe also that the problem has three initial values,
one for the current, one for the angular position of the motor, and one for the angular velocity of
the motor. To determine how the variables c and α change over time, it is necessary to integrate
the set of differential equations. It is not possible to deal with the equations separately and
this characterizes the coupling between the electromagnetic and mechanical parts. Each part
influences the other, i.e., there is a mutual influence.

4 MISTAKES COMMONLY FOUND IN THE LITERATURE THAT DEALS WITH

ELECTROMECHANICAL SYSTEMS

As explained in the paper Introduction, several mistakes can be found in the literature on
electromechanical systems. In this Section, three of these mistakes are discussed. It is shown
with simple numerical examples that they can produce wrong results.

The main discussion is around the third mistake presented in the Introduction, that is, the
hypothesis that affirms that it is possible to neglect a term in the initial value problem that de-
scribes the dynamics of an electromechanical system without changing the interaction between
the electromagnetic and mechanical parts. The same results used to demonstrate that this hy-
pothesis is a misstep show immediately that the first hypothesis presented in the Introduction
(coupling represented by a linear function) is also a misstep. The second mistake represents
clearly a nonsensical way to deal with electromechanical systems. If the system is electrome-
chanical, it must have an electromechanical part. Of course, one alone makes no coupling.

The third mistake can be found in the recent article published by Avanço et al. (2018), and
Belato (2002); Avanço (2015); Belato et al. (2001). These papers and doctoral thesis claim that
the inductance of the armature can be neglected due to the fact that the electrical time constant
of the motor l/r is usually much smaller than the mechanical time constant rjm/ke

2.
With the hypothesis, it is possible to obtain from Eq. (9) a functional relation between α̇ and

c, given by

✟
✟
✟✯lċ(t) + r c(t) + keα̇(t) = ν =⇒ c(t) =

ν − keα̇(t)

r
. (12)

Substituting this functional relation into Eq. (10), the initial value problem for the coupled
system is altered. Given ν, find (α) such that

α̈(t)
[

jm +md2(sinα(t))2
]

− ke
ν(t)−keα̇(t)

r
+

+α̇ [bm +md2α̇(t) cosα(t) sinα(t)] = 0 ,
(13)

with initial conditions

α̇(0) = α̇0 , α(0) = α0 . (14)

Remark that this is a hypothesis based only on parameters values, it does not depend on the
system being studied, and it does not depend on the type of mechanism that couples the me-
chanical end electromagnetic parts. Apparently it is a useful hypothesis, since it simplifies the
problem greatly. When the hypothesis is made, the differential equation related to the dynamics
of the electromagnetic part becomes an algebraic equation given by Eq. (12). Thus, the initial
value problem (IVP) is maimed, it looses one differential equation and the initial condition re-
lated with the lost equation, i.e., the initial condition for the current. The initial value of the

R. LIMA, R. SAMPAIO, P. HAGEDORN936

Copyright © 2018 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



current becomes c(0) = ν−keα̇0

r
, it is not an independent value anymore, i.e., c(0) is related

with α̇(0). It is important to remark that the remaining equation in the IVP represents only the
dynamics of the mechanical part. The dynamics of the motor is ignored, as sketched in Fig. 4.
The current is computed after the integration of the IVP.

electromagnetic

system

mechanical

system

Dynamics of the Dynamics of the

Example: DC Motor

mechanical

system

Dynamics of the

Figure 5: Sketch of the decoupling between electromagnetic and mechanical parts with the inductance neglected.

To exemplify how it misleads, we perform simulations neglecting the inductance and not
neglecting it and comparing the two results. One sees, immediately, the big difference between
the two dynamics.

5 RESULTS OF NUMERICAL SIMULATIONS

For computation, the initial value problem defined by Eqs. (9) to (14) was integrated in a
range of [0.0, 6.0] seconds. The 4th-order Runge-Kutta method is used for the time integration
scheme with a time-step equal to 10−6. The motor parameters used in all simulations are listed
in Table 1. The cart mass is 5.0 kg and, it is considered α̇(0) = 0 rad/s, α(0) = 0 rad and c(0) =
ν/r Amp. Observe that, with these values, one has l

r
= 6.12 × 10−4 and rjm

ke
2 = 1.31 × 10−2.

Parameter Value

l 1.880× 10−4 H
jm 1.210× 10−4 Kg m2

bm 1.545× 10−4 Nm/(rad/s)
r 0.307 Ω
ke 5.330× 10−2 V/(rad/s)

Table 1: Values of the motor parameters used in simulations.

To demonstrate how neglecting the inductance can mislead the results, we perform simulations
neglecting and not neglecting it and we compare the results. The simulations were computed
for different values of ν, the source voltage, and of d, the pin eccentricity.

5.1 Results varying the source voltage

Figures 5.1 and 5.1 show the phase portrait of α̇ graph as function of c for different values
of ν. In these simulations d = 0.05 [m]. Observe that the results are different. When the
inductance is neglected, there is a linear relation between α̇ and c. This can be verified by
Eq. (12). Observe that when the inductance is not neglected, there is no functional relation
between α̇ and c. The relation depends on initial conditions.
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(a) (b)

Figure 6: Phase portrait of the α̇ as function of c (a) not neglecting the inductance and (b) neglecting it, i.e.,
considering lċ = 0.

As explained previously, when lċ(t) is neglected, the configuration space is maimed. It looses
one dimension. To observe this flattening we ploted the phase portrait of cos(α) as function of
α̇ and c for ν = 20 V neglecting and not neglecting the inductance (see Figs. 5.1 and 5.1).
Observing them, it is clear that the 3D phase space becomes a 2D phase space.

(a) (b)

Figure 7: Phase portrait of the cos(α) as function of α̇ and c for ν = 20 V (a) not neglecting the inductance and
(b) neglecting it, i.e., considering lċ = 0.

Observing the graphs of τ as function of α̇ shown in Figs. 5.1 and 5.1, it is possible to
verify that the maximum and minimum values of torque changes if the inductance is neglected.
Besides this, Figs. 5.1 shows that there is no functional relation between α̇ and τ . This is an
important result. It shows that the hypothesis found in the literature since, at least, 1943 (please
see Rocard (1943), Kononenko (1969), Nayfeh and Mook (1979)) that affirms that the coupling
between the electrical and mechanical part can be represented by a linear function is not always
correct. The lack of a functional relation is the essence of the coupling!

Analyzing the graphs of c as function of x shown in Figs. 5.1 and 5.1, it is possible to
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Figure 8: Phase portrait of the τ as function of c (a) not neglecting the inductance and (b) neglecting it, i.e.,
considering lċ = 0.

observe that when the cart position is near the origin, the values of the current neglecting and
not neglecting the inductance are similar. However, as the cart moves away from the origin, the
values of the current become very different. While the the minimum value of c not neglecting
the inductance is around −74.0 Amp, the minimum value of c neglecting it is −220.0 Amp
(almost 300% lower). To understand the reason of this, we should observe the graph of α̇ as
function of x shown in Figs. 5.1 and 5.1. Remark that the maximum values of α̇ occur when
the cart changes its direction of movement, i.e., when x = d or x = −d. Recalls also that when
the inductance is neglected, there is a linear relation between α̇ and c (see Eq. (12)). Thus, as α̇
grows, c decreases linearly. Comparing Figs. 5.1 and 5.1, it is also possible to verify that when
lċ is neglected, the motor speed is lower. While the the maximum value of α̇ not neglecting the
inductance is around 2, 000.0 rad/s, the maximum value neglecting it is around 1, 626.0 rad/s
(almost 20% lower).

(a) (b)

Figure 9: Phase portrait of the c as function of x for ν = 20 V (a) not neglecting the inductance and (b) neglecting
it, i.e., considering lċ = 0.

Another interesting result can be verified comparing ċ as function of c not neglecting the in-
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(a) (b)

Figure 10: Phase portrait of the α̇ as function of x for ν = 20 V (a) not neglecting the inductance and (b) neglecting
it, i.e., considering lċ = 0.

ductance and neglecting it. These graphs are shown in Figs. 5.1 and 5.1. Remark the hypothesis
lċ = 0 introduces a symmetry in relation to the ċ = 0.

(a) (b)

Figure 11: Phase portrait of the ċ as function of c (a) not neglecting the inductance and (b) neglecting it, i.e.,
considering lċ = 0.

To quantify how neglecting inductance misleads the results, and also to enrich the analysis,
we computed the Fast Fourier Transform (FFT) of the current and motor speed over time, ĉ
and ˆ̇α. This tool has been used in the analysis of electromechanical systems (see Lima and
Sampaio (2015), Lima and Sampaio (2012)). It provides important information of the signals
in the frequency domain. The FFT was computed for the cases in which the inductance is
neglected and is not neglected. Figure 5.1 shows the value of the frequency which corresponds
to the first peak of the FFT of the motor speed for different values of ν. In these simulations it
was considered that d = 0.05 m. Observe that as the value of ν grows, the difference between
the frequencies of the first peak neglecting and not neglecting the inductance also grows. For
ν = 20 V, while the frequency of the peak is 93.41 Hz not neglecting it, it is 77.64 Hz neglecting
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it (almost 17% lower). This confirms the results presented previously in Figs. 5.1 and 5.1.
Figure 5.1 shows the total number of turns of the disk in the range of integration [0.0, 6.0]
seconds. As expected, the total number of turns is bigger if the inductance is not neglected
(almost 15.0% bigger).
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Figure 12: (a) Values of the first peak (not neglecting and neglecting the inductance) for the FFT of the motor
speed. (b) Total number of turns of the disk in the range of integration [0.0, 6.0] seconds.

5.2 Results varying the nominal eccentricity of the pin

Lima and Sampaio (2015) discuss the influence of the nominal eccentricity of the pin, the
parameter d, in the dynamics of the system. It is shown that this parameter is related with
the nonlinearity of the system. When d is small, the initial value problem of the motor-cart
system tends to a linear system, But as the eccentricity grows, the nonlinearities become more
pronounced.

To show how neglecting inductance misleads the results, specially when the nonlinearities
are more pronounced, we perform simulations neglecting and not neglecting it and we compare
the results for different values of d. Figures 5.2 and 5.2 show the phase portrait of α̇ graph as
function of c for different values of d. In these simulations ν = 20.0 [V]. Figures 5.2 and 5.2
show the value of the frequency which corresponds to the first peak of the FFT of the current
and motor speed for different values of ν. In these simulations ν = 20.0 Volts. Observe that as
the value of ν grows, the difference between the frequencies of the first peak neglecting and not
neglecting the inductance also grows.

6 CONCLUSIONS

This paper discuss three mistakes found in the literature dealing with electromechanical sys-
tems. The oldest hypothesis was first made at least 75 years ago, Rocard (1943), and still
persists in the literature, as for example in a recent paper Avanço et al. (2018).

To exemplify how the three hypotheses can mislead and change the dynamics, we performed
simulations in a simple electromechanical system. The results shows immediately the mislead-
ing.

One of the discussed hypothesis is the claim that the inductance of a DC motor can be ne-
glected due to the fact that the electromagnetic time constant of the motor is usually much
smaller than the time constant related to the mechanical part of the system. Some references,
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(a) (b)

Figure 13: Phase portrait of the (a) not neglecting the inductance and (b) neglecting it, i.e., considering lċ = 0.
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Figure 14: Values of the first peak (not neglecting and neglecting the inductance) for the FFT of (a) current (b)
motor speed.
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as Belato et al. (2001), affirm also that this hypothesis does not affect the interaction between
the electromagnetic and mechanical parts of a coupled system. Comparing the results of the
numerical simulations neglecting the inductance and not neglecting, it is possible to verify, im-
mediately, the big difference between the two dynamics. Hence, we showed that he hypothesis
that the inductance can be neglected based only on the values of the system parameters can not
be made in general. The neglect introduces in the system a linear algebraic relationship between
α̇ and c. Since there is no functional relation between these two variables, this hypothesis can
not be right. The lack of a functional relation is the essence of the coupling.

The dynamics of the coupled system is given by an initial value problem comprising a set of
coupled differential equations. Any change in this set of coupled differential equations modifies
the interaction between electromagnetic and mechanical parts, affecting the behavior of the
entire system. The hypothesis that the inductance can be neglected has been used as a strategy
to reduce the number of equations in the initial value problem. However, with the neglect, the
system is decoupled! The dynamics of the electromagnetic part is ignored. We believe that, in
this case, the system should not be called an electromechanical system. One alone makes no
coupling!

Beyond the literature dealing with electromechanical systems neglecting inductance, there
are books and papers dealing with electromechanical systems without even mentioning elec-
tromagnetic variables, as current and charge (please see, Danuta and Maciej (2006), González-
Carbajal and Domínguez (2017), Gonçalves et al. (2014) and Cveticanin et al. (2017)).

Some others references supposedly dealing with electromechanical systems assume a linear
algebraic relationship between τ and α̇ (Avanço et al. (2017), Nayfeh and Mook (1979), Rocard
(1943), Kononenko (1969)). In the case of a DC motor in a steady state, this is correct (see
Fig. 3.1 and Eq. (5)), however Fig. 5.1 shows that this is not true if there is no steady state.
Observe that in the motor-cart system, there is no functional relation between α̇ and τ . It should
be remarked that in books as Kononenko (1969) and Nayfeh and Mook (1979), the disarray is
such that the response of a DC motor in a steady state is used to characterize a system that is
not in a steady state. To be precise, see page 225 and figure 4.33 of Nayfeh and Mook (1979).
On this page it is said that “to account the influence of the motion on the performance of the
motor, one needs to to know the characteristics of the motor, which are the net driving torques
developed by the motor”. Furthermore, the characteristics of the motor are presented in a form
of a graph, similar to the one presented in Fig. 3.1.
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