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Abstract. The aim of this paper is to reproduce the phenomenon of the intermediate axes theorem also
known as the Dzhanibekov effect or the Tennis Racket effect. A RBD (Rigid Body Dynamic) model with
6DOFs (six degrees of freedom) was developed to reproduce the Euler’s law of motion. Furthermore, in
the RBD model, quaternions are employed for the mathematical modeling. Then an asymmetrical-top
object was analyzed in order to show the intermediate axis effect. Finally, a numerical simulation is
performed in order to reproduce the instability.
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1 INTRODUCTION

Basically, the intermediate axis theorem also known as tennis racket theorem effect says that
in an asymmetrical top object (three different principal inertia moments, where I1 < I2 < I3)
the spin around the first and third principal inertia is stable, but if the object rounds around the
second inertia this motion will perform a weird an periodic movement due to an instability in
its spin.

The statement of the intermediate axis theorem has been studied for a long time as it repre-
sents a problem for Classical Mechanics, Poinsot (1851), Landau and Lifshitz (1976), Ashbaugh
et al. (1991). And even reached the category of state secret for some world powers during the
space race. It acquires such relevance when the mission Soyuz T-131 was realized. Since while
the repair to re-activate the space station was being carried out, Commander Dzhanibekov wit-
nessed the mysterious trajectory on a wingnut while performing the maintenance of the equip-
ment, so it is also usually called Dzhanibekov effect or Wingnut effect.

Despite the fact that the intermediate axis theorem is a known concept for long time since
it corresponds to the traditional analysis of Classic Mechanics, due to its curious and unusual
movement this effect never ceases to amaze anyone who witnesses that mysterious behavior.
The aim of this paper is to reproduce this phenomenon through a RBD model that uses quater-
nions for the mathematical representation. As an indirect profit, reproducing this phenomenon
validates the implementation of the RBD model and also proves the potentiality of the quater-
nions representation since it enables vertical launches, situation that is not possible if the Euler’s
Angles implementation is used as the singularity known as gimbal-lack.

This work consists of a first session in which a classification of objects is presented based
on their moments of inertia, Sec.(2). Sec.(3) presents the Rigid Body Dynamic model (RBD)
that uses quaternions for the mathematical representation. Then, Euler equations are analyzed
for the different object classifications, where the physics of the precessional motion is stud-
ied: Sec.(4.2) and Sec.(4.3). Finally, the instability of the intermediate axis is reproduced and
analyzed in Sec.(6).

2 DESCRIPTION

Inertia tensor: The inertia of a body is defined by 6 values that constitutes a symmetrical
tensor, that means the inertial tensor I is a 2nd order tensor, I ∈ CT (2)2, Eq.(1). Like
all CT(2), this tensor can be transformed to a diagonal tensor if the directions of the axes are
correctly chosen, this process is known as diagonalization and the elements of the diagonal are
the principal moments of inertia, which corresponds to the inertias in the directions selected to
diagonalize the tensor 3.

Iij = Iji =

Ixx Ixy Ixz
Ixy Iyy Iyk
Ixz Iyz Ikk

 (1)

In other words, when the diagonalization of I ∈ CT (2) is performed, two tensors are ob-
tained: Id, v, Eq.(2) where Id, v ∈ CT (2). Id is a diagonal tensor, whose diagonal elements

1It is of note because it marked the first time a spacecraft had docked with a ’dead’ space station, and the first
time such a station had been returned to operational status following repairs

2CT refers to Cartesian Tensor
3This process is the one carried out when the eigenvalues and eigenvectors of a CT are obtained (2)
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are the principal moments of inertia, and the column vectors of the tensor v are the principal
directions of inertia.

Id =

I1 0 0
0 I2 0
0 0 I3

 v =


v11 v21 v31

v12 v22 v32

v13︸︷︷︸
v1

v23︸︷︷︸
v2

v33︸︷︷︸
v3

 (2)

Furthermore, by convention, they are organized so that I1 > I2 > I3 where these inertias have
the particularity that none can exceed the sum of the other two, for example:

I1 + I2 ≥ I3 (3)

The moments of inertia characterize the rotation of a body in a given direction. Depending
on how these moments of inertia are, bodies can be classified into different groups:

• all identical inertias: I1 = I2 = I3, this object is known as spherical top

• two equal inertias and the third not: I1 = I2 6= I3, this object is known as symmetrical
top

• all different inertias: I1 6= I2 6= I3, this object is known as asymmetrical top

Whenever a body rotates about one of its principal axes, then the moment vector will be
aligned with the velocity vector. If the velocity vector (which is given by the ellipsoid of the
kinetic energy, KE) stops being collinear with the moment vector, then the motion will change
given rise to precession phenomenon. Therefore, precession can be defined as the parameter that
indicates how non-aligned the velocity vector is with respect to the principal axis. In Sec.(4.2)
the analysis of the precession effect is extended.

3 RBD MODEL - RIGID BODY DYNAMIC MODEL

The RBD (Rigid Body Dynamic) model describes the movement of an object where the
governing equation during the trajectory can be classified in kinematics and dynamics. The first
one relates linear and angular velocity with the change on position and orientations, the second
one relates forces and torques acting on the system with the change on velocity both linear and
angular. Kokes et al. (2007) presents the equations of rigid body on the bodyframe Eq.(4,5,6,7)
which are valid for any rigid body.

• Cinematics Equations:ẋẏ
ż


NED

=

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

uv
w


BODY

(4)

φ̇θ̇
ψ̇


NED

=

1 sφtθ cφtθ
0 cθ −sφ
0 sφ/cθ cφ/cθ

pq
r


BODY

(5)
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• Dynamics Equations: u̇v̇
ẇ


BODY

=

Fx/mFy/m
Fz/m


BODY

−

 0 −r q
r 0 −p
−q p 0

uv
w


BODY

(6)

ṗq̇
ṙ


BODY

= I−1


TxTy
Tz


BODY

−

 0 −r q
r 0 −p
−q p 0

 I
pq
r


BODY

 (7)

where s∗, c∗ and t∗ are the usual trigonometric operations (cos(), sin(), tan()), m is the mass
of the object, I is the inertial tensor on the body-frame (therefore is constant), [x, y, z] is the
position in the inertial frame,and the rest of the vectors are stated in body-frame: [u, v, w] is
the linear velocity, [p, q, r] is the angular velocity, [Fx, Fy, Fz] is the total force exerted on the
object and [Tx, Ty, Tz] is the resulting torque. The angles φ, θ y ψ are called Euler angles or
angles of Tait-Bryan, and provide the orientation of the body, in other words, allow to relate the
representations of vectors in the inertial frame with their corresponding representations in the
body frame. In particularly, the Eq.(4) relates the coordinates of the velocity vector expressed
in the body frame ([u, v, w]) with the velocity vector expressed in the inertial frame ([ẋ, ẏ, ż]).
Moreover, the Eq.(5) models the evolution of the orientation given by the Euler angles as a
function of the angular velocity of the projectile in the body frame ([p, q, r]).

Note that from Eq.(4) to Eq.(7) the Euler angles are involved just in the cinematics equations.
Therefore, if another representations approach is choosen for the body orientation, for example,
utilizing quaternions, the matrix of cosin directors or the rotation vector will change but the
general form of the dynamics equations will remain unchanged.

3.1 Quaternions

A quaternion is defined by the expression q̂ = 〈qe,qv〉 where qe is the scalar part of the
quaternion and qv = (qv1 , qv2 , qv3) its vector part. Forward, the principal operations that could
be perform with a quaternion could be appreciated in Coutsias and Romero (2004).

A very interesting property of the quaternions is that if a quaternion is defined as:

q̂α,u =
〈
c(α/2),us(α/2)

〉
, (8)

where α is any angle and u a unit vector, so the result of the operation q̂ 〈0,v〉 q̂∗, where v
is any vector, it is a quaternion which scalar part is 0 and which vector part correlate with per-
forming a rotation of the vector v the the angle α, having the vector u as an axis, according with
the Right-hand Rule. Also, it could be assessed that any unit quaternion q̂ could be express as〈
c(α/2),us(α/2)

〉
. Therefore, if there is a unit quaternion, the product q̂ 〈0,v〉 q̂∗ always correlate

with a rotation as it was mentioned. So a huge profit could be obtained if the orientation of the
object is represented by an unit quaternion q̂ by the way of 〈0,vi〉 = q̂

〈
0,vb

〉
q̂∗ transform the

representation vb of each vector v in the body frame to each representation vi in the inertial
frame. The Eq.(6) should be replace by:

〈0, (ẋ, ẏ, ż)〉 = q̂ 〈0, (u, v, w)〉 q̂∗ (9)
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Equivalently, the Eq.(9) could be represented in matrix form as:ẋẏ
ż

 = Qi
b

uv
w

 , (10)

where

Qi
b =

q2
e + q2

v1
− q2

v2
− q2

v3
2(qv1qv2 − qeqv3) 2(qv1qv3 + qeqv2)

2(qv1qv2 + qeqv3) q2
e − q2

v1
+ q2

v2
− q2

v3
2(qv2qv3 − qeqv1)

2(qv1qv3 − qeqv2) 2(qv2qv3 + qeqv1) q2
e − q2

v1
− q2

v2
+ q2

v3

 . (11)

Moreover, the Eq.(5) have to be replaced by a expression that relates the evolution of the
quaternion with the angular velocity of the projectile. This is coupled by the Coutsias and
Romero (2004)

˙̂q =
1

2
q̂ 〈0, (p, q, r)〉 . (12)

As in the Eq.(9), this equation could be defined in a matrix form as:
q̇e
q̇v1
q̇v2
q̇v3

 =
1

2


−qv1 −qv2 −qv3
qe −qv3 qv2
q3 qe −qv1
−qv2 qv1 qe


pq
r

 . (13)

In fact the motion of an object utilizing quaternions for its mathematical representation is
defined by the kinematic equations Eq.(14) and Eq.(15), and the dynamics equations Eq.(6) and
Eq.(7), which are expressed in the following system, where Qi

b is described by Ec.(11):

• Cinematics Equations: ẋẏ
ż

 = Qi
b

uv
w

 , (14)


q̇e
q̇v1
q̇v2
q̇v3

 =
1

2


−qv1 −qv2 −qv3
qe −qv3 qv2
q3 qe −qv1
−qv2 qv1 qe


pq
r

 . (15)

• Dynamics Equations: This equations remains similar to Ec.(6) and Ec.(7).

3.1.1 Advantages and Disadvantages utilizing quaternions

As a matter of facts, the Eq.(5) exhibits it weakness when the pitch angle (θ) is±π/2, Pucheta
et al. (2014). This singularity is known as gimbal lock. No matter the sequence in which the
rotation is performed corresponding to the Euler’s angles, there will always be a singularity for
any of the angles involved. Even though, utilizing quaternions does not present any problem of
this characteristics. Furthermore, as it shows Eq.(4) and Eq.(5), performing a simulation of a
model based on Euler’s angles, requires many evaluations of multiple trigonometric functions.
Nevertheless, Eq.(14) and Eq.(15) just involves additions and multiplications. This differences
hold a huge profit for quaternions when you are working with limited numerical resources or
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low requirements on real time. However, while the Euler’s angles just required the employ
of only three values (θ, φ, ψ) for the representation of a body orientation, utilizing quaternions
required employing and additional value (qe, qv1, qv2, qv3).

Finally, an additional drawback of utilizing quaternions is that they are not intuitive either
when defining orientation references on the tracking algorithms or when observing the behavior
of the system. For instance, observing graphs of the temporary evolution of roll, pitch and yaw
gives a good idea of the behave of the system, while observing the graphs of (qe, qv1, qv2, qv3)
could not be intuitively understand. Nevertheless, this awkwardness can easily be avoided per-
forming conversions between the two reference systems. First, from the definition of roll (φ),
pitch(θ) and yaw(ψ) the corresponding quaternion could be calculated by the product

q̂(φ, θ, ψ) = q̂ψ,kq̂θ,jq̂φ,i, (16)

where î = (1; 0; 0), ĵ = (0; 1; 0) y k̂ = (0; 0; 1). On the other hand, the Euler’s angles corre-
sponding to the quaternion q̂ could be calculated as Bekir (2007)

φ = arctan2
(
qv2qv3 + qeqv1 ,

1
2
− (q2

v1
+ q2

v2
)
)

θ = arcsin (−2(qv1qv3 − qeqv2))
ψ = arctan2

(
qv1qv2 + qeqv3 ,

1
2
-(q2

v2
+ q2

v3
)
) , (17)

where arctan2(a, b) is the angle belonging to the interval (−π, π) which sin is a√
a2+b2

and which
cosin is b√

a2+b2
. It should be noted that the resulting angles φ and ψ will be in the range (−π, π)

and the angle θ in the range (−π/2, π/2). Therefore, if the Euler’s angles are defined out of
this range, and the corresponding quaternions are obtained by Ec. (16), and then recovering the
Euler’s angles by Ec. (17), the resulting angles will not agree with the original angles.

4 ANGULAR MOMENTS ANALYSIS - EULER’S EQUATION APPLICATION

The angular momentum is given by the equation ~M = I~Ω, where the moment vector is
proportional to the angular velocity as long as the body is rotating on the principal axes of
inertia, which corresponds to situation where the angular velocity is aligned with the moment
vector. On the other hand, if the body rotates in any other direction then the angular velocity is
not aligned with the moment vector and a movement known as precession will occur.

In the following sections different solutions are analyzed for systems in which there are
no external efforts, both Forces and Moments. The trajectory described by the body will be
given by the temporal evolution of the equations of motion, Eq.(18), which are summarized
in the 6ODE’s (Ordinary Differential Equations) Landau and Lifshitz (1976). As the core of
the research is the rotation, the translation analysis is avoided, studying just rotation. Also,
contributions due to external torques are omitted.

Ω̇1 = 1
I1

Σ~τ ext1 + (I2−I3)
I1

Ω3Ω2

Ω̇2 = 1
I2

Σ~τ ext2 + (I3−I1)
I2

Ω1Ω3

Ω̇3 = 1
I3

Σ~τ ext3 + (I1−I2)
I3

Ω2Ω1


Ω̇1 = (I2−I3)

I1
Ω3Ω2

Ω̇2 = (I3−I1)
I2

Ω1Ω3

Ω̇3 = (I1−I2)
I3

Ω2Ω1

(18)
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4.1 Spherical Top

In this situation all inertias are identical, I1 = I2 = I3, so the solutions for the ODE are
constants values depending on the initial conditions, Eq.(19).

Ω̇1 = (I1−I1)
I1

Ω3Ω2

Ω̇2 = (I1−I1)
I2

Ω1Ω3

Ω̇3 = (I1−I1)
I3

Ω2Ω1


Ω̇1 = 0

Ω̇2 = 0

Ω̇3 = 0


Ω1 = C1

Ω2 = C2

Ω3 = C3

(19)

4.2 Symmetrical top

The symmetrical-top bodies are objects with two similar inertias and the third not, I1 = I2 6=
I3. The equality of the inertias is applied, consequently the Eq.(18) turned into Eq.(20).

Ω̇1 = (I1−I3)
I1

Ω3Ω2

Ω̇2 = (I3−I1)
I1

Ω1Ω3

Ω̇3 = (I1−I2)
I3

Ω2Ω1


Ω̇1 = (I1−I3)

I1
Ω3Ω2

Ω̇2 = (I3−I1)
I1

Ω1Ω3

Ω̇3 = (0)
I3

Ω2Ω1


Ω̇1 = (I1−I3)

I1
Ω3Ω2

Ω̇2 = (I3−I1)
I1

Ω1Ω3

Ω̇3 = 0

(20)

where Ω3 is a constant value Ω3 = C1 and therefore the product of a constant times Ω3 is
also a constant value, which is named w. The term in the equation of Ω1 will be −w since
(I1 − I3) = −(I3 − I1).

Ω1(t) = A cos(w t)

Ω2(t) = A sin(w t)
(21)

Eq.(21) is the solution of the 2nd order ODE Ec.(20) which models a harmonic motion in two
dimensions describing the curved path, where A is the amplitude, and ω the frequency. Strictly
speaking, the frequency is f = w

2π
and ω is the angular velocity of rotation. In other words,

the movement described is periodic, since after a while the vector returns to its initial position
and the cycle begins again. Hence ω is the speed with which the angular velocity vector ~Ω
changes and therefore the instantaneous axis of rotation. This behavior is known as precession
phenomenon and is defined as the movement associated with the change of direction in space
experienced by the instantaneous axis of rotation of a body, where that speed of change is the
precession speed Ωpr. Eq.(22) details this situation.

Ωpr = C̃ Ω3 =

C̃︷ ︸︸ ︷(
I3 − I1

I1

)
Ω3 = ω (22)

In this way, Eq.(22) is reformulated, being now expressed with the precession speed Ωpr.

Ω1(t) = A cos (Ωpr t)

Ω2(t) = A sin (Ωpr t)
(23)

Finally from Eq.(23) and Eq.(20) it is concluded that the rotation speed of the body is:

~Ω =

Ω1

Ω2

Ω3

 =

A cos (Ωpr t)
A sin (Ωpr t)

C1

 (24)
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Thus, Eq.(24) presents the general angular velocity of the object. Indeed, ~Ω = ~Ω(t) changes
instant by instant, hence it is constant with respect to the main axis x3 but as it is describing a
circumference , the vector ~Ω will follow that path and assuming different values from instant
to instant. How fast the vector travels around the circumference is known as precession speed,
Ωpr.

4.3 Asymmetrical Top

Now the study is performed for a body where the three moments of inertia are different
between each other, that is, I1 6= I2 6= I3 and also I1 > I2 > I3. If the analysis is performed
from the conservation of the angular momentum point of view, where ~M = I ~Ω thus if the
moment stays constant, | ~M | = C, then by increasing I ↑, results in a decrease of Ω ↓. That is
I3 will be the smallest axis of inertia and therefore will have the highest spin velocity.

Eq.(25a) is the equation of the kinetic energy of rotation, which represents all the config-
urations so that the object has the maximum energy of rotation for certain angular velocities
~Ω. This energy is a scalar magnitude (E ε CT (0) 4) and its value is constant during rotation
since they are conserved due to the absence of diffusive effects that may vary the energy of the
system. Otherwise, Eq.(25b) is the moment equation and is a vector magnitude, M ε CT (1).
It should be noted that what is constant is not the momentum but its magnitude. Both Eq.(25a)
and Eq.(25b) will remain constant.{

E = 1
2

[I1 Ω2
1 + I1 Ω2

2 + I1 Ω2
3]

| ~M |2 = I2
1 Ω2

1 + I2
2 Ω2

2 + I2
3 Ω3

1

(25)

The system of equations given by Eq.(25) geometrically represents two ellipsoids, which
when compared with the canonical equation of the ellipse, Eq.(26) it is shown that the semi-
axes for the energy ellipse, Eq.(25a) are a = ±

√
2E
I1

, with its analogous for’ b ’and’ c ’, while

for the moment ellipse, Eq.(25b), a = ±
√
| ~M |2
I21

, and its analogous for’ b ’and’ c ’, where the
semi-axes correspond to each principal axis of rotation.

1 =
x2

a2
+
y2

b2
+
z2

c2
(26)

Therefore the system of equations, Eq.(25) expressed in the canonical form of the ellipse, is
presented in the form:


1 =

Ω2
1

2E
I1

+
Ω2

2
2E
I2

+
Ω2

3
2E
I3

1 =
Ω2

1
| ~M|2
I21

+
Ω2

2
| ~M|2
I22

+
Ω3

1
| ~M|2
I23

(27)

Solving the intersection of both ellipses involves a considerable complexity. However, if
we consider expressing the angular velocity of Eq.(25a) as a function of the moment where

4CT refers to a Cartesian Tensor, indicating the range of the tensor. CT (0) is a zero order tensor , that is, a
scalar, CT (1) vector, etc.
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Mi = IijΩj −→ Ωj = Mi

Iij
, the same for Eq.(25b), a system related by the moment is obtained,

Eq.(29). 

E = 1
2

[I1 Ω2
1 + I1 Ω2

2 + I1 Ω2
3]

E = 1
2

[
I1

(
M1

I1

)2

+ I1

(
M2

I2

)2

+ I1

(
M3

I3

)2
]

2E =
M2

1

I1
+

M2
2

I2
+

M2
3

I3

1 =
M2

1

2EI1
+

M2
2

2EI2
+

M2
3

2EI3

(28)

Eq.(28) shows the geometric representation of an ellipsoid with respect to the moment with
semi-axes at a =

√
2EI1, and its analogous for’ b ’and’ c ’. Where, as it was said before, the

ellipsoid represents the configurations of the system where the maximum energy of rotation is
obtained, and the semi-axes are the principal axes of inertia.{

1 =
M2

1

2EI1
+

M2
2

2EI2
+

M2
3

2EI3

|M |2 = M2
1 +M2

2 +M2
3

(29)

Therefore, with the transformation, a system of equations expressed in terms of the the an-
gular momentum is achieved, Eq.(29). This system consists in the energy of rotation and the
angular momentum. Geometrically, the solution of the system represents the intersection be-
tween an ellipsoid and a sphere, which is simpler and more intuitive solution rather than two
ellipsoides. This expression shows that the moment will have two bounded values by the semi-
axes of the energy ellipsoid, that is, all the admissible solutions that are between the minimum
and maximum value of the semi-axes, Eq.(30).

For a better comprehension an algorithm was developed in GNU-Octave software where the
intersection of an sphere and a ellipsoid was solved. This situation is presented in Fig.(1) where
all the possible solutions for the intersection between an ellipsoid and a sphere are shown, whose
physical analogy would be the rotating configuration assumed by the object for a given moment
obtaining the maximum kinetic energy available.

c2 < M2 < a2

2EI3 < M2 < 2EI1

(30)

Figure 1: Ellipsoid - Sphere Intersections
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Figure 2: Stable configuration, Moment Path Inertia, I3 and I1

4.4 Possible scenarios

From the system of Eq.(29) for a constant amount of energy there are different possible
situations, mainly defined by the three semi-axes, which precisely correspond to the principal
axes of inertia, Fig.(1). Furthermore, the possible solutions are analyzed, starting from the
minimum value upto the maximum value that the moment can adopt, that is c2 < M2 < a2.

To begin with, when the body is rotating about its smallest principal axis of inertia 2EI3,
this principal axis is collinear with its angular velocity |~Ω|, and is proportional to the | ~M |, this
is because the moment vector is aligned with the angular velocity.

However, if the moment has a component that interrupts the collinearity, that is, | ~M | suffers
a minimum variation with respect to the axis of inertia, Fig.(2a), in this case the solution of
the energy-moment system will be two closed curves. These curves are the solution of the
intersection between the energy ellipsoid and the moment sphere; one curve for each side of
the ellipsoid. Then, the moment vector | ~M | while moving along the curve performs a cone-
shaped movement. This phenomenon is known as precession and it is defined as the movement
associated with the change of direction experienced by the instantaneous axis of rotation . In
other words, it is a parameter that indicates how not-aligned the moment vector | ~M | and the
principal axes of inertia are. Although in Sec.(4.2) the mathematical analysis of the precession
phenomenon is performed for a symmetrical-top body, the same phenomenon also happens in
asymmetrical-top when the object suffers a variation in the moment ~M close to the smallest
axis of inertia 5.

As the not-alignment increases, the opening degree of the cone will be greater, since the
circumference given by the intersection between the ellipsoid and the sphere increases. In this
case, the vector ~M will suffer a modification in its components. Although, its magnitude is
constant | ~M | = C1, where C1 ε CT (0), it should be noted the vector component will be
modified ~M = ~M1 + ~M2 + ~M3. Consequently, the projection on the principal axis of inertia
will be smaller and therefore the body will suffer a decrease in its angular velocity, while its
difference will contribute to the precession movement, performing a more pronounced circular
curve. These situations can be deduced from Fig.(2a) and Fig.(2b).

5From development it is manifested that the precession phenomenon occurs both for the smallest axis of inertia
I3 and for the largest I1
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Figure 3: Moment path - Inertia I2

The graphical interpretation of the precession phenomenon is appreciated when the circum-
ference given by the intersection between the ellipsoid and the sphere begins to grow and there-
fore the projection of the vector moment ~M on the axis of inertia begins to decrease. In other
words, the more aligned the vector | ~M | is with respect to the axis of rotation, the greater will
be its projection on it, and therefore greater will be its rotation speed |~Ω|. Since the intersection
between the ellipse and the sphere is a closed curve, it is evident that the motion of the moment
vector | ~M | is periodic, that is, the vector moves along the path described by the intersection
curve and then returns to its original position.

This situation in which a slightly difference of the moment vector | ~M | produces a deviation
movement close to the curve, occurs both in the greatest (I1) and least (I3) semi-axes of the
ellipse, Fig.(2). However, it is observed that the situation on the region close to the intermediate
axis (I2), the curve described is different from a circle close to the axis of inertia, Fig.(3). In
the case in which the body is rotating about the intermediate axis of inertia (I2) and experiences
a slight variation on the moment | ~M |, it will have a qualitative different behavior, where the
moment vector | ~M | performs a totally strange and away path from the "poles" of the semi-axis.

This situation is due to the fact that the rotational movement of the body about the great-
est (I1) and least (I3) semi-axes are stable, while the rotational movement with respect to the
intermediate axis (I2) is unstable, generating that strange and amazing disturbance described
during the rotation about the 2nd principal axis. This phenomenon is known as the paradox
of the tennis racket or the intermediate axis theorem, also known as the ’Dzhanibekov’ effect
or the Wingnut effect, and graphically it is manifested that this bizarre trajectory is due to the
intersection between the ellipsoid and the sphere that occurs close to the second principal axis
of inertia, Fig.(3).

5 METHODOLOGY

To deal with technical issues, an algorithm that solves the RBD model with 6DOF’s was
developed and it uses quaternions for the mathematical representation of the body’s orientation.
This is an advantage since such modeling allows representing displacements in any direction, an
issue that is not possible if Euler’s angles are used due to the singularity known as gimbal-lock.

The algorithm solves the Euler’s law of motion equations, Eq.(18) and models the trajectory
of a body under the initial conditions of motion. It is implemented in Python language and in
order to solve the ODE’s, a temporal integrator with an adaptive time step is used. It is supplied
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(a) Wingnut’s Characteristics (b) Wingnut’s Axiometry

Figure 4: Asymmetrical-top Object

by the physical parameters of the object, such as its geometric parameters, inertia, center of
mass, etc. The model returns as a result the numerical values of the trajectory and graphs that
show the evolution of the parameters involved.

6 RESULTS

6.1 Numerical Simulations

Several numerical simulations are performed on which translations are omitted since these
values do not affect the effects of rotation. The selected object was an asymmetrical-top wingnut
with the characters shown in Fig.(4). Fig.(5a) shows the path performed by the Moment vector
~M which indeed agrees with the instability analysis performed in Sec.(4.4).

(a) Moment path, ~M (b) Wingnut Result

Figure 5: RBD Result, rotation over intermediate axis

6.2 Rotation sequence, intermediate axis instability

Fig.(6) shows the rotations sequence of the instability experienced by a asymmetrical-top
body when it rotates about its intermediate axis. For a better understanding, the rotation is rep-
resented meantime the different parameters involved are placed, such as: the energy ellipsoid,
the moment sphere, the moment vector and also the trajectory that the moment describes. The
magenta vector represents the moment vector, ~M , which at all times follows the path given by
the intersection between the energy ellipsoid and the moment sphere. For a better visual under-
standing, the energy ellipsoid is represented in blue, while the moment sphere is in red. It is
shown that the intersection between the two curves (ellipsoid-sphere) is the trajectory described
in Fig.(5).
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Figure 6: Rotation sequence, intermediate axis instability also known as Dzhanibekov effect

7 CONCLUSIONS

An algorithm that models the RBD (Rigid Body Dynamics) was developed. On this model,
the rotations of an object about its three axes of inertia were analyzed. It is shown that for an
asymmetrical-top object, rotations about the 1st and 3rd axis of inertia are stable. However,
rotations about the intermediate axis of inertia present a disturbance that produce a deviation
that cause a motion far from the original path. This is due to the fact that rotations about the
2nd axis of inertia are unstable. This phenomenon is known as intermediate axis instability,
tennis racket paradox or ’Dzhanibekov’ effect. The solution of the ODE’s system is obtained
by a geometric approach, thus obtaining an alternative strategy when analyzing stability of
differential equations.
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