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Abstract.
The micropolar microplane theory by Etse, Nieto and Steinmann (2002) [14] is based on
a reformulation of the classical Cosserat theory within the framework of the microplane
concept. The resulting constitutive equations and models include available and more pre-
cise information of the complex microstructure of engineering materials like concrete and
other composites as compared with the classical smeared crack-based material theories.
The main aim of this enriched material formulation was the macroscopic modeling and
description of anisotropic material response behaviors by means of the well-developed mi-
croplane concept applied within a micropolar continuum setting. To derive the micropolar
microplane theory a thermodynamically consistent approach was considered whereby the
main assumption was the integral relation between the macroscopic and the microscopic
free energy as advocated by Carol, Jirasek and Bazant (2001) [10] and Kuhl, Steinmann
and Carol (2001) [15]. In this approach the microplane laws were chosen such that the
macroscopic Clausius-Duhem inequality was fully satisfied. This theoretical framework
was considered to derive both elastic and elastoplastic micropolar microplane models.
After refreshing the most relevant equations of the micropolar microplane theory, this paper
focuses on the evaluation of the localization predictions of this constitutive formulation.
A comparative analysis with the predictions of the classical micropolar constitutive theory
is also included.
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1 INTRODUCTION

The experimental evidence in the field of failure behavior of engineering materials in the
last years demonstrated that the macroscopic response of real materials does strongly
depend on their microstructure and corresponding mechanical features. Therefore, pre-
cise failure predictions require constitutive formulations which account for the relevant
informations of the microstructure.

As a consequence an increasing tendency to use macroscopic models based on funda-
mental aspects of the microstructure of the material can be recognized. Without ques-
tions, one of the most successful attempts in this sense is the microplane theory pioneered
by Bazant & Gambarova (1984) [3], Bazant (1984) [2] and Bazant & Oh (1985) [4] and
(1986) [5] on the basis of an original idea by G.I. Taylor (1938) [20].

The most important contribution of the microplane theory comes from its superior
capacity to model anisotropic material behaviors. The main assumption of the microplane
theory is the relationship between the local or microscopic strain or stress components and
the corresponding global or macroscopic tensor. In this sense and presently the cinematic
constraint is extensively used instead of the static constraint. So that the strains on each
microplane are the resolved components of their macroscopic counterparts.

The potentials of the microplane theory for describing non linear response behaviors
of engineering cohesive-frictional materials like concrete were extensively demonstrated in
the first contributions by Bazant and coauthors related with the microplane theory and,
more recently, in the works by Bazant & Prat (1988) [6], Carol, Bazant & Prat (1991 and
1992) [7, 8] and Carol & Bazant (1997) [9], among many others.

The lack of a thermodynamically consistent approach for deriving microplane-based
constitutive formulations was advocated by Carol, Jirasek & Bazant (2001) [10] who
proposed a method for deriving microplane constitutive formulations within a thermo-
dynamically consistent framework by means of the incorporation of a microscopic free
Helmholtz energy on every microplane. This concept was successfully extended for inelas-
tic material behavior such as damage and plasticity by Kuhl, Steinmann & Carol (2001)
[15]. However, both this work as well as the previous one by Carol, Jirasek & Bazant
(2001) [10] were concerned with classical Boltzmann continua (elastic and inelastic).

Recently Etse, Nieto & Steinmann (2002) citeetse02sc the thermodynamically consis-
tent approach was extended to derive microplane models for micropolar continua in the
spirit of the brothers Cosserat (1909) [11]. The motivation was firstly to enrich the micro-
scopic kinematic and strength features of the microplane formulation so as to reproduce
particular and more complex behaviors of the internal structure of composite quasi-brittle
materials like concrete whereby the presence of aggregates may contribute to the devel-
opment of microrotations in characteristic planes during load histories beyond the elastic
limit. Secondly, the regularization of the post peak response behavior of strain softening
materials. In this sense, the incorporation of the micropolar length scale at the micro-
scopic level leads to an intrinsically non local microplane constitutive relation when the
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additional degrees of freedom of micropolar continua are activated. This characteristic
length accounts for mesh objectivity during FE simulations of softening behaviors.

This work also focouses on the analysis of the localization predictions of the proposed
microplane micropolar theory and on the comparison with the corresponding predictions
of the classical micropolar theory. Both the first and second localization conditions are
considered in the analyses. This analysis demonstrates the regularization capabilities of
the microplane micropolar theory as well as the differences with the classical theory.

2 MICROPOLAR COSSERAT THEORY

In this section the relevant equations of the micropolar continuum in the spirit of the
brothers Cosserat (1909) [11] are presented. This theory was advocated by several authors
during the last decades. One of the most prominent works in this regard was made by
Eringen (1968) [13] who presented a detailed analysis of elastic micropolar continua and
of their mechanical features. However, the first application of the micropolar continuum
in non-linear computational solid mechanics took place at the end of the 1980’s in the
works by Mühlhaus (1989) [17] and de Borst (1991) [12] who analyzed the potentials of
the elastoplastic micropolar constitutive theory to regularize the predictions of post-peak
response behaviors of structural systems within the theoretical framework of the smeared-
crack approach. In the same line, Steinmann & Willam (1991) [19], Willam & Dietsche
(1992) [21], Sluys (1992) [18] and Willam et al. (1995) [22] analyzed the localization
indicators and localization properties of nonlinear micropolar continua.

2.1 Equilibrium at Macro Level

The quasi-static form of linear and angular momentum of a micropolar continuum in the
3D domain B (omitting body forces and body couples for simplicity) reads

divσt = 0 (1)

divµt + e : σ = 0

whereby µ is a non symmetric second order tensor which represents the couple stresses
of the micropolar continuum. The local equilibrium equations of the classical continuum
and the corresponding typical symmetric form of the stress tensor σ are restored when
divµt = 0 → e : σ = 0. Here e denotes the third order permutation tensor.

2.2 Strain and Curvature at Macro Level

The deformation of the micropolar continuum is a consequence of the simultaneous action
of two types of local or micro motions: the classical or translatory ones, represented by the
displacement field u, and the pointwise rotations characterized by the first order tensor
ω. This enriched motion field leads to the following strain measures
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ε = ∇xu −Ω (2)

κ = ∇xω

with Ω = −e · ω. Here ε represents the non-symmetric micropolar strain tensor and
κ is the micro curvature tensor which takes into account the differential changes of the
micro rotations in the neighborhood of a point.

The second order strain tensor may finally be decomposed into a symmetric and skew-
symmetric contribution ε = εsym + εskw with

εsym =
1

2
[∇xu +∇t

xu] (3)

εskw =
1

2
[∇xu −∇t

xu] + e · ω

3 MICROPLANE THEORY

In the microplane theory the macro-mechanical response behavior of materials is con-
trolled by constitutive equations of characteristic planes or microplanes by means of the
static or the kinematic constraint, requiring that either the stresses or the strains on each
microplane, respectively, can be derived by projections of their macroscopic counterparts.
In this work only the cinematic constraint is considered which is used for the purpose of
the present model.
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Figure 1: Microplane normal and tangent components of the strain
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3.1 Strains and Curvatures at Microplanes

For the case of the kinematic constraint the strain and curvature vectors on each mi-
croplane, compare Figure 1, are given by post-multiplication with the microplane normal
vector n, i.e.

tε = ε · n = ∇nu − ω × n tκ = κ · n = ∇nω (4)

The microplane strains and curvatures follow as their normal and tangential compo-
nents

εN = εNn κT = tκ − κN (5)

κN = κNn εT = tε − εN

These equations are valid both for the symmetric as well as for the skew-symmetric
parts of the strain and curvature measures. Taking into account the following properties

εskw · n = −n · εskw κskw · n = −n · κskw (6)

εsym · n = n · εsym κsym · n = n · κsym

the symmetric and skew-symmetric microplane strain components in the normal and
tangential directions of microplanes are then defined by

εN = N : εsym = N : ε (7)

εsym
T = T : εsym = T sym : ε

εskw
T = −T : εskw = −T skw : ε

while the corresponding microplane curvature components in the normal and tangential
directions of microplanes are given by

κN = N : κsym = N : κ (8)

κsym
T = T : κsym = T sym : κ

κskw
T = −T : κskw = −T skw : κ

Here, the second and third order projection tensors N and T are defined with [I]ijkl =
δikδjl the fourth order identity tensor and n the microplane normal vector as

N = n ⊗ n (9)

T = n · I − n ⊗ n ⊗ n
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In addition to the projection tensor T the symmetric and skew-symmetric projection
tensors T sym and T skw with T = T sym + T skw are defined as

T sym = n · Isym − n ⊗ n ⊗ n (10)

T skw = n · Iskw

whereby [Isym]ijkl = [δikδjl+δilδjk]/2 and [Iskw]ijkl = [δikδjl−δilδjk]/2 are the symmetric
and skew-symmetric parts of the fourth order identity tensor I = Isym + Iskw.

4 HEMISPHERICAL INTEGRATIONS

The integration properties of the microplane normal vector n are documented e.g. in
the works of by Bazant & Oh (1986) [5] and Lubarda & Krajcinovic (1993) [16] and are
applied to perform analytical integrations over the hemisphere Ω

∫

Ω

dΩ = 2π (11)
∫

Ω

n ⊗ n dΩ =
2π

3
I

∫

Ω

n ⊗ n ⊗ n ⊗ n dΩ =
2π

3

[
Ivol +

2

5
Isym
dev

]

with [I]ij = δij the second order identity tensor and the volumetric and symmetric
deviatoric fourth order projection tensors defined as

Ivol =
1

3
I ⊗ I Isym

dev = Isym − Ivol (12)

For later use the relevant products of the projection tensors T and N are given as

[
T T · T ]

ijkl
:= TaijTakl = ninkδjl − ninjnknl [N ⊗ N ]ijkl = ninjnknl (13)

and thus integrate over the hemisphere into

3

2π

∫

Ω

T T · T dΩ = Iskw +
3

5
Isym
dev

3

2π

∫

Ω

N ⊗ NdΩ = Ivol +
2

5
Isym
dev (14)

Accordingly, the relevant products of T sym and T skw are given as
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[
[T sym]T · T sym

]
ijkl

=
1

4
[ninkδjl + ninlδjk + δilnjnk + δiknjnl]− ninjnknl (15)

[
[T skw]T · T skw

]
ijkl

=
1

4
[ninkδjl − ninlδjk − δilnjnk + δiknjnl]

[
[T skw]T · T sym

]
ijkl

=
1

4
[ninkδjl + ninlδkj − δilnjnk − δiknjnl]

and thus integrate over the hemisphere into

3

2π

∫

Ω

[T sym]T · T symdΩ =
3

5
Isym
dev (16)

3

2π

∫

Ω

[T skw]T · T skwdΩ = Iskw

3

2π

∫

Ω

[T skw]T · T symdΩ = O

5 THERMODYNAMICALLY CONSISTENT FORMULATIONS

Based on the proposal by Carol, Jirasek and Bazant (2001) [10] and Kuhl, Steinmann
and Carol (2001) [15], Etse, Nieto and Steinmann (2002) developed a general formulation
for thermodynamically consistent micropolar microplane constitutive laws. In the follow-
ing we refresh the elastic and elastoplastic forms of the micropolar microplane material
formulation.

5.1 Micropolar Microplane Elasticity

In the case of elastic behavior of both the membrane and bending stiffness components
the internal variables are zero (qu = qω ≡ 0) and the microscopic free energy reduces to

ψmic = ψmic
u (εN , ε

sym
T , εskw

T ) + ψmic
ω (κN ,κ

sym
T ,κskw

T ) (17)

For elasticity the free membrane and bending microscopic free energy can alternatively
be expressed in terms of the stored energy

ψmic
u = WN u(εN) +W sym

T u (εsym
T ) +W skw

T u (εskw
T ) (18)

ψmic
ω = WN ω(κN) +W sym

T ω (κsym
T ) +W skw

T ω (κskw
T )

whereby for linear elasticity the elastic moduli EN u, E
sym
T u , Eskw

T u , EN ω, E
sym
T ω and Eskw

T ω

were introduced into the microscopic energy functions as
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WN u =
1

2
εNEN uεN W sym

T u =
1

2
εsym

T ·Esym
T u · εsym

T W skw
T u =

1

2
εskw

T ·Eskw
T u · εskw

T (19)

WN ω =
1

2
κNEN ωκN W sym

T ω =
1

2
κsym

T ·Esym
T ω · κsym

T W skw
T ω =

1

2
κskw

T · Eskw
T ω · κskw

T

The definition of the microscopic Clausius-Duhem inequality leads to the microscopic
constitutive stresses and couple stresses as thermodynamically conjugate variables to the
strain and micro curvature components, respectively

σN =
∂ψmic

u

∂εN
= EN uεN σ

sym/skw
T =

∂ψmic
u

∂ε
sym/skw
T

= E
sym/skw
T u · εsym/skw

T (20)

µN =
∂ψmic

ω

∂κN

= EN ωκN µ
sym/skw
T =

∂ψmic
ω

∂κ
sym/skw
T

= E
sym/skw
T ω · κsym/skw

T (21)

¿From the macroscopic version of the Clausius-Duhem inequality the macroscopic stress
and couple stress tensors follow as functions of the microscopic components

σt =
3

2π

∫

Ω

[NEN uεN + [T sym]T · Esym
T u · εsym

T − [T skw]T · Eskw
T u · εskw

T ]dΩ (22)

µt =
3

2π

∫

Ω

[NEN ωκN + [T sym]T · Esym
T ω · κsym

T − [T skw]T · Eskw
T ω · κskw

T ]dΩ

The last equation can alternatively be rewritten as

σt = Eu : ε (23)

µt = Eω : κ

whereby the macroscopic membrane and bending constitutive moduli are defined as
follows

Eu =
3

2π

∫

Ω

[EN uN ⊗ N + [T sym]T · Esym
T u · T sym + [T skw]T · Eskw

T u · T skw]dΩ (24)

Eω =
3

2π

∫

Ω

[EN ωN ⊗ N + [T sym]T · Esym
T ω · T sym + [T skw]T · Eskw

T ω · T skw]dΩ

Next, under the common assumption of microplane isotropy the tangential strain and
curvature vectors and the tangential stress and couple stress vectors remain parallel during
the entire load history. Consequently, we consider the following simplification
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εsym
T ‖ σsym

T → Esym
T u = Esym

Tu I (25)

εskw
T ‖ σskw

T → Eskw
T u = Eskw

Tu I

κsym
T ‖ µsym

T → Esym
T ω = Esym

Tω I

κskw
T ‖ µskw

T → Eskw
T ω = Eskw

Tω I

Assuming further that the constitutive moduli are independent from the orientation of
the microplanes we arrive at

Eu =
3

2π

[
ENu

∫

Ω

N ⊗ NdΩ + Esym
Tu

∫

Ω

[T sym]T · T symdΩ + Eskw
Tu

∫

Ω

[T skw]T · T skwdΩ

]

(26)

Eω =
3

2π

[
ENω

∫

Ω

N ⊗ NdΩ + Esym
Tω

∫

Ω

[T sym]T · T symdΩ + Eskw
Tω

∫

Ω

[T skw]T · T skwdΩ

]

The integration formulae (11) to (17) allow an analytical evaluation of the integrals in
eq.(26) to render

Eu =

[
3

5
ENu − 3

5
Esym

Tu

]
Ivol +

[
2

5
ENu +

3

5
Esym

Tu

]
Isym + Eskw

Tu Iskw (27)

Eω =

[
3

5
ENω − 3

5
Esym

Tω

]
Ivol +

[
2

5
ENω +

3

5
Esym

Tω

]
Isym + Eskw

Tω Iskw

The comparison of eq. (27) with the general isotropic non symmetric elastic tensors
for decoupled membrane-bending behavior

Eu = α1Ivol + [α2 + α3]I
sym + [α2 − α3]I

skw (28)

Eω = β1Ivol + [β2 + β3]I
sym + [β2 − β3]I

skw

then leads finally to the identifications

α1 =
3

5
ENu − 3

5
Esym

Tu ; β1 =
3

5
ENω − 3

5
Esym

Tω (29)

α2 + α3 =
2

5
ENu +

3

5
Esym

Tu ; β2 + β3 =
2

5
ENω +

3

5
Esym

Tω

α2 − α3 = Eskw
Tu ; β2 − β3 = Eskw

Tω

whereby α1 := L and α2 + α3 := 2G are recognized as the common Lamé parameters,
while α2 − α3 := 2Gc is the micropolar shear modulus which couples the skew-symmetric
stress-strain components.

�����������������������������������������������������������������,��������#��-������	�������$���.�����
�� �
����

��	



5.2 Micropolar Microplane Elastoplasticity

In this section the thermodynamically consistent formulation of the microplane-based
micropolar elastoplastic model is presented both for the general case and for the von
Mises type model.

5.2.1 General Case

The elastoplastic type of micropolar continuum response behavior is characterized by the
additive decomposition of the macroscopic total strain and curvature tensors into elastic
and plastic contributions

ε = εe + εp (30)

κ = κe + κp

The kinematic constraint assumption extends the applicability of the additive decom-
position to the microscopic level. As a consequence, the total strain and curvature com-
ponents at microplanes can be expressed as

εsym
N = εsym

N e + εsym
N p κN = κN e + κN p (31)

εsym
T = εsym

T e + εsym
T p κsym

T = κsym
T e + κsym

T p

εskw
T = εskw

T e + εskw
T p κskw

T = κskw
T e + κskw

T p

In the most general case the tensor of internal variables includes the plastic contribu-
tions of all the strain and curvature components at the microplanes

q = q(εsym
N p , ε

sym
T p , ε

skw
T p , κN p,κ

sym
T p ,κ

skw
T p , ξ

mic) (32)

whereby the scalar internal variable ξmic accounts for the simplest isotropic harden-
ing/softening response.

The microscopic free energy follows from the definition of the elastic free energy and
of the microscopic free energy functions in equations (17), (19) and (20) as

ψmic = WN u(εN − εN p) +W
sym
T u (εsym

T − εsym
T p ) +W

skw
T u (εskw

T − εskw
T p ) + (33)

WN ω(κN − κN p) +W
sym
T ω (κsym

T − κsym
T p ) +W

skw
T ω (κskw

T − κskw
T p ) +

∫ ξmic

0

φmic(ξ̃mic)dξ̃mic
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whereby the restricted format of isotropic hardening/softening behavior is taken into

account by means of the term
∫ ξmic

0
φmic(ξ̃mic)dξ̃mic.

The constitutive stresses and couple stresses at microplanes are then obtained from the
evaluation of the microscopic Clausius-Duhem inequality

σN =
∂ψmic

∂εN e

= EN u εN e µN =
∂ψmic

∂κN e

= EN ω κN e (34)

σsym
T =

∂ψmic

∂εsym
T e

= Esym
T u · εsym

T e µsym
T =

∂ψmic

∂κsym
T e

= Esym
T ω · κsym

T e

σskw
T =

∂ψmic

∂εskw
T e

= Eskw
T u · εskw

T e µskw
T =

∂ψmic

∂κskw
T e

= Eskw
T ω · κskw

T e

The evolution of the internal variables is restricted by the inequality of the microscopic
dissipation

Dmic = σN ε̇N p + σsym
T · ε̇sym

T p + σskw
T · ε̇skw

T p + (35)

µN κ̇N p + µsym
T · κ̇sym

T p + µskw
T · κ̇skw

T p − φmic ξ̇mic ≥ 0

Thus, the yield function on each microplane can be defined in the form

Φmic = ϕ(σN ,σ
sym
T ,σskw

T , µN ,µ
sym
T ,µskw

T )− φmic(ξmic) ≤ 0 (36)

whereby the function ϕ of the microscopic constitutive stresses and couple stresses is
characterized by the gradients

νN u
.
= ∂ϕ/∂σN νsym

T u
.
= ∂ϕ/∂σsym

T νskw
T u

.
= ∂ϕ/∂σskw

T (37)

νN ω
.
= ∂ϕ/∂µN νsym

T ω
.
= ∂ϕ/∂µsym

T νskw
T ω

.
= ∂ϕ/∂µskw

T

For the associated case the plastic strain and curvature evolution laws are obtained from
the variational problem defined by the dissipation inequality (36) under consideration of
the convexity condition and of the constraint (36). For the general non-associated case
we postulate instead

ε̇N p = γ̇mic ϑN u ε̇sym
T p = γ̇mic ϑsym

T u ε̇skw
T p = γ̇mic ϑskw

T u (38)

κ̇N p = γ̇mic ϑN ω κ̇sym
T p = γ̇mic ϑsym

T ω κ̇skw
T p = γ̇mic ϑskw

T ω ξ̇mic = γ̇mic

with the flow directions at each microplane
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ϑN u = ∂Φ̆/∂σN ϑsym
T u = ∂Φ̆/∂σsym

T ϑskw
T u = ∂Φ̆/∂σskw

T (39)

ϑN ω = ∂Φ̆/∂µN ϑsym
T ω = ∂Φ̆/∂µsym

T ϑskw
T ω = ∂Φ̆/∂µskw

T

in terms of the plastic multiplier γ̇mic and of the gradients to the microscopic plastic
potentials Φ̆.

The Kuhn-Tucker loading-unloading conditions as well as the consistency condition
can be defined on each microplane as

Φmic ≤ 0, γ̇mic ≥ 0, Φmic γ̇mic = 0, Φ̇mic γ̇mic = 0 (40)

An explicit solution for the plastic multiplier can be obtained from the consistency
condition

γ̇mic =
1

h

[
νNuENuN + νsym

Tu · Esym
Tu · T sym − νskw

Tu · Eskw
Tu · T skw

]
: ε̇ + (41)

1

h

[
νNωENωN + νsym

Tω · Esym
Tω · T sym − νskw

Tω · Eskw
Tω · T skw

]
: κ̇

whereby

h = νNuENuϑNu + νsym
Tu · Esym

Tu · ϑsym
Tu − νskw

Tu · Eskw
Tu · ϑskw

Tu + (42)

νNωENωϑNω + νsym
Tω · Esym

Tω · ϑsym
Tω − νskw

Tω · Eskw
Tω · ϑskw

Tω +Hmic

and

Hmic =
∂φmic(ξmic)

∂ξmic
(43)

Finally, the macroscopic elastoplastic constitutive equations can be expressed as




σ̇t

µ̇t



 =




Eu,u

ep Eu,ω
ep

Eω,u
ep Eω,ω

ep



 :




ε̇

κ̇



 (44)

with the elastoplastic operators
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Eu,u
ep = Eu − 3

2π

∫

Ω

1

h
ñu ⊗ m̃udΩ (45)

Eω,ω
ep = Eω − 3

2π

∫

Ω

1

h
ñω ⊗ m̃ωdΩ

Eu,ω
ep = − 3

2π

∫

Ω

1

h
ñu ⊗ m̃ωdΩ

Eω,u
ep = − 3

2π

∫

Ω

1

h
ñω ⊗ m̃udΩ

whereby the modified gradients are defined as

ñu = ENuνNuN + T sym · [Esym
Tu · νsym

Tu ]− T skw · [Eskw
Tu · νskw

Tu ] (46)

m̃u = ENuϑNuN + T sym · [Esym
Tu · ϑsym

Tu ]− T skw · [Eskw
Tu · ϑskw

Tu ]

ñω = ENωνNωN + T sym · [Esym
Tω · νsym

Tω ]− T skw · [Eskw
Tω · νskw

Tω ]

m̃ω = ENωϑNωN + T sym · [Esym
Tω · ϑsym

Tω ]− T skw · [Eskw
Tω · ϑskw

Tω ]

Please note the resulting format of the micropolar microplane elastoplastic tangent
operator is quite similar to that of the classical micropolar model (compare Willam et al.
(1995) [22]) with exception of the integrals which account for the microscopic contribution
to the macroscopic operator in case of the micropolar microplane formulation.

5.2.2 von Mises Type Model

The classical micropolar elastoplastic von Mises type model, see e.g. de Borst (1991) [12],
is characterized by the yield condition

Φmac =
√

3J2 − φmac = 0 J2 =
1

4
s : s +

1

4
s : st +

1

2l2c
µ : µ (47)

with s the deviator of σ and with yield stress with linear hardening

φmac = φmac
0 +Hmacξmac (48)

Here the evolution of the hardening/softening parameter is given by

ξ̇mac =

√
1

3
ε̇p : ε̇p +

1

3
ε̇p : ε̇t

p +
2

3
l2c κ̇p : κ̇p = γ̇mac (49)

Assuming that the second invariant of the stress deviator tensor s is a function of the
tangential stress vectors and of the tangential couple stress vectors of the microplanes,
the von Mises yield condition at the microplane level can be expressed in the format
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Φmic =

√

σsym
T · σsym

T + σskw
T · σskw

T +
1

l2c
[µsym

T · µsym
T + µskw

T · µskw
T ]− φmic ≤ 0 (50)

with the yield stress with linear hardening

φmic = φmic
0 +Hmicξmic (51)

Here the evolution of the hardening/softening parameter is given by

ξ̇mic =
√

ε̇sym
T p · ε̇sym

T p + ε̇skw
T p · ε̇skw

T p + l2c [κ̇
sym
T p · κ̇sym

T p + κ̇skw
T p · κ̇skw

T p ] = γ̇
mic (52)

which, similarly to the macroscopic description, coincides with the plastic multiplier.

6 LOCALIZATION CONDITIONS

In the continuum approach the localization condition is associated with a discontinuity or
jump across a singularity surface S of second order. Assuming that the surface with the
direction N separates the continuum B into two regions B+ and B− which are connected
by the jumps in the underlying gradient fields across this surface. In Cosserat-continua
weak jumps across a singularity surface may occur not only in the strain field, but also in
the field of micro-curvatures. Departing from the notion of a continuous solid in which the
velocity and rotation rate fields are initially continuous and where discontinuities of their
spacial derivatives develop across the singular surface, we arrive to the first localization
condition by means of the Cauchy lemma relating the traction rate vector and the stress
tensor, the elastoplastic constitutive relation and the Maxwell theorem, in the form




Qu,u

L Qu,ω
L

Qω,u
L Qω,ω

L



 ·



γ̇uMu

γ̇ωMω



 =




O

O



 (53)

with the suboperators

Qηψ
ij = Nk E

ηψ
kilj Nl where η, ψu, ω. (54)

To satisfy (53), the localization operator QL must be singular. Thus, the determinant
must be zero:

det (QL) = det




Qu,u

L Qu,ω
L

Qω,u
L Qω,ω

L



 = O (55)

in case of discontinuous bifurcation.
The second localization condition follows from the balance of linear and angular mo-

menta on both sides of the singularity surface. Particularly, the consideration of the
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bifurcated stress and couple stress in the angular momentum equation lead to the condi-
tion

e : [[σ̇]] = 0 (56)

This second condition has to be fulfilled simustaneously with the first condition to admit
discontinuous bifurcation.

Both localization conditions are analyzed in the present research work for the microp-
olar microplane model and for the classical micropolar model. The predictions of these
localization conditions obtained with both models are compared.

7 NUMERICAL ANALYSIS

In this section we analyze the predictions of the micropolar microplane elastoplastic von
Mises model for the uniaxial tensile and simple shear tests. Figure 2 illustrates the
boundary conditions of these tests which were analyzed under plane strain constraints. In
both one element meshes of Figure 2 the standard bilinear quadrilateral finite element with
four integraion points was used. This finite element formulation of micropolar continuum
problems is obtained by means of discretizations of the weak form of the balance equations
in the spirit of the Dirichlet variational principle, see Willam et al. (1995). Thereby the
displacements and rotations (and their variations) are approximated by the same shape
functions according to the Galerkin-Bubnov method.

In the simple shear test, full displacement and rotation restraint were considered on
the nodes located on the bottom of the quadrilateral element while only the vertical
displacements were restrained on the other element nodes. On the other hand, in case of
the axial extension test, the full displacement and rotation restraint were assumed only
in one element node as indicated in Figure 2 while in other two nodes one displacement
possibility together with the in plane rotation were restrained according to the double
symmetry of the problem. Both, the yield condition and hardening/softening evolution
law are those indicated in section 7.2. The micropolar elastic parameters at microplanes
for the numerical analysis were E = 30000N/mm2, ν = 0.2, Gc = G and lc = 1mm.
Consequently the other parameters resulted: ENu = 33333.33, G = 12500, Esym

Tu =
19444.45, Eskw

Tu = 25000, ENω = Esym
Tω = Eskw

Tω = 25000.
The microscopic and macroscopic von Mises stresses φmic

0 and φmac
0 , respectively, were

chosen so that similar predictions of the J2 type maximum strength corresponding to
both the uniaxial tensile and simple shear tests are obtained with the microscopic and
the macroscopic micropolar models. So, the resulting values were φmic

0 = 23.5 N/mm2

and φmac
0 = 50.0 N/mm2 for the axial extension test while these stresses are φmic

0 = 29.0
N/mm2 and φmac

0 = 50.0 N/mm2 for the simple shear test.

7.1 Axial Tension Test

Figure 3 illustrates the numerical predictions of the uniaxial tensile test with the microp-
olar microplane elastoplastic model and with the classical micropolar elastoplastic model.
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 (a) Simple Shear Test 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 (b) Uniaxial Tensile Test 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B = 15 mm 

B = 15 mm 

Nodal rotation restraint  

Figure 2: Boundary conditions of the plane strain uniaxial tensile and simple shear tests

Three different types of evolution laws of the stress functions φmic and φmac were con-
sidered for these models, corresponding to perfect plasticity, linear hardening and linear
softening behavior.

The first observation from the comparison between the predictions of both types of
micropolar models is that their response behaviors during the elastic range agree very
well. Also the overall predictions of both models in the plastic range under linear softening
and perfect plasticity are very similar. However, under linear hardening assumption the
classical microplane model leads to a much more ductil response behavior indicating that
this formulation is more sensitive to variations of the hardening evolution law.

We analyze now the fundamental differences between the numerical predictions of the
micropolar microplane and of the classical micropolar model with perfect plasticity in Fig-
ure 3. In the case of the classical micropolar model with perfect plasticity the requirement
for constant values of J2 due to the yield condition

Φmac =
√

3J2 − φmac
0 = 0

is responsible for the plateau in the J2 evolution which immediately follows the elastic
response, as indicated in Figure 4. On the other hand, the evolution of the the axial
tensile force as well as that of the vertical tensile stress in Figures 3 and 4, respectively,
show a smooth transition from the elastic to the perfect plastic regime.

The micropolar microplane model with perfect plasticity leads to a macroscopic stress
tensor’s evolution during the axial extension test characterized by an initial smooth soft-
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Figure 3: Load-displacement predictions. Axial extension test.

0.00

20.00

40.00

60.00

80.00

0.000 0.002 0.004 0.006 0.008 0.010 0.012

[N
/m

m
2]

Tensile stress. Classical Micropolar Model

J2. Classical Micropolar Model

Tensile stress. Micropolar Microplane Model

"J2. Micropolar Microplane Model"

Figure 4: Stress-strain predictions. Axial extension test.
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Figure 5: Load-displacement predictions. Simple shear test.

ening response of J2 and subsequent plateau. The same response behavior are observed
in the evolutions of the vertical tensile stress in Figure 4 and of the axial force in Figure
3.

7.2 Simple Shear Test

The numerical predictions of the micropolar microplane model for the simple shear test
and the comparison with the corresponding predictions of the classical micropolar model
are indicated in Figure 5. Both a linear hardening and a perfect plastic evolution laws were
assumed for φmic and φmac in equations (48) and (51), corresponding to the microplane
model and to the macroscopic model, respectively. It is important to note that in the
simple shear test, contrarily to the axial extension test, the microrotations are activated.
The results in Figure 5 also indicate that the micropolar microplane model with perfect
plasticity leads, as expected, to a plateau of the external shear force. However, this is not
the case of the predictions corresponding to the classical micropolar model which leads to
continuus hardening of the external shear force although perfect plasiticity was considered.
This is due to the evolution of the nonuniform microrotations which are activated during
this test.
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8 CONCLUSIONS

In this work the thermodynamically consistent elastic and inelastic micropolar formula-
tions by Etse, Nieto and Steinmann (2002) were analyzed. Thereby, the main assumption
is the incorporation of a microscopic free Helmholtz energy on every microplane, which
in the present case includes the contributions of the additional degree of freedom and
stiffness of the micropolar continuum, represented by the micro rotations and the couple
stresses. Also an uncoupled format of the free energy in terms of the membrane and
bending contributions is included.

The solutions for the micropolar microplane elastoplastic model include the macro-
scopic explicit formulation of the constitutive tangential moduli in terms of the micro-
scopic contributions. The general elastoplastic formulation for the micropolar microplane
model was particularized for von Mises type elastoplasticity.

The numerical results in this work show the predictions of the J2 elastoplastic model
for the uniaxial tensile and simple shear tests. Also the main differences with the corre-
sponding predictions of the classical micropolar elastoplastic model were highlighted.

The results demonstrate that micropolar microplane constitutive theory allows the for-
mulation of material models based on relevant aspects of the microstructure of engineering
materials which exceeds the capacity of the classical macroscopic model theories.

The analysis of the localization indicator which belongs to the scope of work of the
present research program is being developed. The corresponding results will be illustrated
in the oral presentation of this work.
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H-B. Mühlhaus. J.Wiley & Sons Ltd., pp. 297-339.

�����������������������������������������������������������������#� �#����������
�����&��+
$�
����� ���
������� �$%&���������#��������

��



