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Abstract. In this work we describe and analyze the application of a meshless method to static 
and dynamic calculation of Kirchhoff thin plate problems. The method is based on the use of 
blurred derivatives. Briefly, blurred derivatives allow to transform  differential equations into 
an integral equation which does no contain derivatives of the unknown function. The final 
expression is an updating formula which only has physical meaning in a limit known as a 
functional integral, so that the technique is designated as the Functional Integral 
Formulation (FIM) of continuous problems. 
       The application of this meshless method for modeling plate problems offers a number of 
advantages over the traditional finite element method. It considerably simplifies data 
preparation in highly irregular structures and allows to use “p-refinement” without 
modifying the net of nodes.  
      In this work we first describe the basics of the method and its computational 
implementation. The method is the applied to a static problem comparing its performance 
with rectangular finite elements. Finally, its feasibility for calculation of free vibrations of 
plates is demonstrated.  
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1 INTRODUCTION 
 
     During the last decade a number of meshless methods have been designed to overcome the  
difficulties posed by the generation of meshes (i.e. partitions of the domain) in three 
dimensional problems. Some of the methods developed so far are the Diffuse Element 
Method1 and the Element Free Galerkin Method2 (which use MLS interpolation), hp-Clouds3, 
Smooth Particle Hydrodynamics4, Reproducing Kernel Particle Methods5,Natural Element 
Method6, Generalized Finite Differences7, etc. However, the use of such methods in the 
framework of approximate theories, such as beams, plates and shells has began only very 
recently. For example, the hp-Cloud Method has been successfully applied to Timoshenko 
beam problems by Barcellos et. al.8 and to Mindlin’s plates by García et. al.9 Also, boundary 
integrals with moving least-squares approximations were used to model Kircchoff thin plates 
by Sladek et. al.10  
     In this work we present the use of the Functional Integral Formulation11-13 to solve 
Kirchoff thin plate problems. First, the governing differential equation is transformed into an 
integral updating formula that lead very naturally for meshless computational 
implementations. This is followed by a discussion on discretization using simple polynomials 
and boundary conditions enforcement. Finally, numerical examples of statics and dynamics  
are analyzed and compared with finite elements. It is shown that the present method allows 
better accuracy and higher convergence rates than the latter. 
 
2.-  KIRCHHOFF THIN PLATE EQUATIONS 
 
    Thin plates are plane structures with one of its dimensions, the thickness, much smaller 
than the in-plane dimensions. This allows to make some simplifying assumptions in order to 
avoid a full three dimensional modeling of the structure. The two most important assumptions 
are: 

a) Sections normal to the middle plane remain plane after deformation 
b) Stresses normal to the plate surface are negligible  

If the thickness, h, is small enough (i.e. smaller that 1/10 of the smallest in-plane dimension) a 
third hypothesis can be added (Bernoulli-Euler assumption)  

 
c) Shear deformation is negligible 

 
    The three above mentioned restrictions define the Kirchhoff thin plate model. In this 
simplified mathematical model there is a single independent variable which is the 
displacement normal to the plate surface (lying on the x,y plane), W(x,y). The other two 
displacements are related to the former by:  
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, and the traverse displacement satisfies the well known fourth order differential equation:  
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Where D is the plate stiffness, ρ  is density and p is the pressure on the plate surface.  
The problem can be stated in weak form either by application of the virtual work principle or 
Galerkin weighted residuals to equation (2). The resulting statement contains second 
derivatives of the displacement W, so that C1 continuity of shape functions is required. This  
stringent limitation have fueled research on plate and shell finite elements during the past two 
decades. A large number of elements of varying complexity is available, as reviewed in many 
textbooks.   
Recently, some meshless methods of solution have been applied to this problem. , which do 
not require inter-element  
 
 
 
3   MESHLESS METHOD BASE ON BLURRED DERIVATIVES 
 
Blurred derivatives stem from a very simple observation: the value of a continuous function at 
a point can be evaluated as: 
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The  operator P0 of (3) is the zero order blurred derivative kernel:    
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Derivatives of the function f(x,y) in (3) can be evaluated by differentiation of the zero order 

kernel. A comprehensive study of blurred derivatives and its application to numerical solution 

of differential equations can be found elsewhere. For our purposes it suffices to define the 



����

#� �#����������
�����&��,
$�
����� ���
������� �$%&���������#�������������������������������������������������������������������������

blurred derivative kernel corresponding to the biharmonic operator of equation (2), which is 

found to be:  

                          ( )[ ]2'2
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Where 
δ
r

r =′  

Notice that a given zero order kernel generates an associated set of kernels by differentiation. 

In particular, within the Gaussian family the zero order kernel given by formula (4) generates 

the first set. The second generation starts with a zero order kernel similar to (4) multiplied by 

a second degree polynomial. The third generation starts with the zero order kernel:  

                            



 +−=

−−

−
42

2

)(

0
),(

2 '
2

1
'33

.

2

2

rr
e

P
δπ

δ

δ

rr

rr                                                    (6) 

 
The kernels (5) and (6) satisfy the relation 
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 This relation will be used in the derivation of a numerical scheme below.  
 
 
5.- Approximation of the differential equation 
To obtain a numerical scheme for solving equation (2) using blurred derivatives, it must be 
first transformed into an updating prescription for the field W(x,y). To this end we first 
approximate the time derivative of W using finite differences:  
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Where the dot designates the first time derivative and ε  is a sufficiently small time step. 
Equation (2) is the approximated as: 
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Where we abbreviated: 
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difference approximation we have: 
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We now replace the first two terms in the right member of (7) by their blurred derivatives 
counterparts. For the first one we use the third generation zero order kernel (6). 
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Finally, we relate the time step ε  to the parameter δ  of the blurred derivative through 
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Hence, using relation (7) we have: 
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The operator ),( εrr −′P  is termed infinitesimal propagator because its effect on the field W(x,y,t) 

is to propagate it in time an infinitesimal amount ε .   
  
4  COMPUTATIONAL IMPLEMENTATION 
 
    To obtain a numerical scheme from equation (13) the domain of interested is filled with 
nodes, not necessarily equally spaced, and the unknown field W(x,y)  is approximated by a 
prescribed function around each node.  The simplest function is a local fourth degree 
polynomial whose coefficients relate the unknown at the current node with its value on some 

number, M, of neighboring nodes. Hence, calling W
~

  the local approximation we have:   
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    The vector of coefficients a can be calculated in terms of the M nodal values of u  

solving14: 
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where  
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The matrix .VV
t

of a least square fit –  eq. (16) – is known to be very poorly conditioned, 
specially when the degree of the polynomial is high. This may lead to substantial numerical 
error which pollutes the solution. Hence, a better alternative is to directly compute the 
pseudo-inverse of matrix  V using singular value decomposition.  
    To obtain a numerical scheme discretization (14) is fed into the updating prescription (13). 
In the case of equilibrium the state does not evolve and velocities are zero so that the discrete 
equation of a given interior node “i” takes the form: 
                                     ),(.),(
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Where W
~

 is the local polynomial approximation (15 – 17) around node “i” in terms of its (M-
1) neighbors.  
     To model free vibrations we proceed as usual assuming that displacements vary 
harmonically: 
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Replacing relation (19) in equation (13) an eigenvalue equation is obtained:  
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Where  ωεωελ iei −=  
 
     As regards boundary conditions, it is necessary to enforce two data at each point. One of 
them is the local displacement, W0 , and the other is either the local curvature parallel to the 

outward normal, n
W

∂
∂ , or the corresponding bending moment, nM .  In methods based on 

weak formulations this is achieved by defining three fields at each node: displacement and its 
two partial derivatives. The present method, however, used only one variable per internal 
node (the displacement) so that a different procedure should be used. We resorted to a very 
simple and effective one which is to just place two nodes at each boundary point, carrying the  
corresponding pair of local boundary data. The treatment of the local prescribed displacement 
is trivial and similar to the finite element procedure. The other node however requires to 
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modify its contribution to the Vandermonde matrix (17) of any node linked to it. Let us 

assume for instance that the prescribed value is the first derivative n
W

∂
∂ , where the outward 

normal is   t
yx nn ),(ˆ =n . Hence, this boundary node is the k-th node in the cloud of a given 

interior node the corresponding row of (17) must be replaced by the derivative of the 
polynomial  (15): 
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Similarly, if the prescribed value is a bending moment 
b

W

n

W
M n ∂
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∂= ν (where 

t
xy nn ),(ˆ −=b  is the local tangent to the boundary) the corresponding derivative of R should 

be used:  
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5 NUMERICAL RESULTS 
 
     To test the performance of the technique we modeled a simply supported square plate of 
side a=20 mm and thickness h=0.5 mm with a uniformly distributed load p=10 Mpa. The 
analytical solution for this problem has the form of a Fourier series:  
 
    The material has a Young modulus E=140000 Mpa and Poisson ratio 3.0=ν .  We used 
nine different meshes of equally spaced points ranging from 9X9 to 25X25.  The polynomial 
approximation of the present method has 15 coefficients. Hence, for each interior point we 
used the 24 first and second neighbors forming a square. The problem was also solved using 
square finite elements. In this case each interior node is connected to first eight neighbors 
forming a square. However, in this case each node has three degrees of freedom (transverse 
displacement and its two first derivatives). As a consequence, in FIM each row of the stiffness 
matrix has 25 non-zero entries while in finite elements it has 27. But the matrix of FIM is 
non-symmetric so that the computational cost is somewhat higher but of the same order. 
    Figure 1 shows error versus nodal distance h in logarithmic scale for FIM and FEM. It can 
be seen that the error with FIM is always lower that with FEM. Also, the convergence rate 
with the latter is two, as predicted by theory, while with FIM it is three. Hence, at the expense 
of a slightly higher computer cost (due to non-symmetry) FIM provides a substantially 
enhanced convergence rate.  
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     Figure 1: Convergence of FEM and FIM for regular meshes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             Figure 2: Convergence of FEM and FIM for regular and irregular meshes. 
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    In order to compare the performance of both schemes for irregular arrays of nodes (where a 
meshless method is supposed to offer an advantage over FEM), we solved the same problem 
but moving all interior nodes at random a distance of ten percent the nodal spacing. Results 
are shown in Figure 2. While FEM results are now much less accurate than with a regular net 
of nodes, the error with FIM is only marginally increased. Moreover, the convergence rates of 
both schemes are the same as in Figure 1. Hence, the meshless scheme is expected to be 
advantageous for irregularly shaped plates. 
 
        Finally, we calculated eigenfrequencies of the same plate with all boundaries clamped. 
The analytical solution is: 
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For the numerical simulations we used a mesh of 11X11 nodes. Comparison of exact and 
numerical results for the first three modes are shown in table 1. In this case both numerical 
methods provide very similar results, with FIM slightly in excess of exact values.  
 
 

m n Exact FEM FIM 
1 1 147.8 147.7 148 
1 2 369.5 369.3 369.7 
2 2 591.2 590.4 591 

 
 
       Table 1: First three frequencies for free vibrations of square plate.  
 
 
6 CONCLUSIONS 

 
An extension of the Functional Integral Method for solving Kirchhoff plate model problems is 
presented. The implementation used local fourth order polynomial interpolation using the first 
24 neighbors for each internal node. To account for boundary conditions two nodes are placed 
at each point of the boundary: one of them carries the prescribed displacement and the other 
one the prescribed derivative (either first derivative of displacement or bending moment). The 
numerical scheme has been compared with quadrilateral plate finite elements, which used the 
first eight neighbors for each internal node. Numerical results for static test problems indicate 
that the present method not only achieves better accuracy than FEM when the same nodes are 
used, but also that the rate of convergence is substantially higher. In particular, FIM has 
shown to be less sensitive to irregularity of the net of nodes so that it is specially suited to 
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model highly irregular domains. For free vibrations of plates on the other hand both methods 
perform similarly. Hence, the proposed method is a viable alternative for modeling of plates.   
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