Discontinuous Galerkin Methods for Solving the Acoustic Wave Equation

Gabriel A. Castromán, Fabio I. Zyserman

Abstract


In this work we develop a numerical simulator for the propagation of elastic waves by solving the one-dimensional acoustic wave equation with Absorbing Boundary Conditions (ABC’s) on the computational boundaries using Discontinuous Galerkin Finite Element Methods (DGFEM). The DGFEM allows us to easily simulate the presence of a fracture in the elastic medium by means of a linear-slip model. We analize the behaviour of our algorithm by comparing its results against analytic solutions.
Furthermore, we show the frequency-dependent effect on the propagation produced by the fracture as appears in previous works. Finally, we present an analysis of the numerical parameters of the method.

Full Text:

PDF



Asociación Argentina de Mecánica Computacional
Güemes 3450
S3000GLN Santa Fe, Argentina
Phone: 54-342-4511594 / 4511595 Int. 1006
Fax: 54-342-4511169
E-mail: amca(at)santafe-conicet.gov.ar
ISSN 2591-3522