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Abstract. This paper presents a finite element formulation for transient dynamic analysis of sandwich
curved beams with embedded viscoelastic material whose constitutive behavior is modeled by means of
fractional derivative operators. The sandwich configuration is composed of a band as a viscoelastic core
bonded to elastic metallic strips. The viscoelastic model used to describe the behavior of the core is a
four-parameter fractional derivative model. Thai@wald definition of the fractional operator is used to
implement the viscoelastic model into a finite element formulation. Then, discretized motion equations
are solved with a direct time integration scheme based on the Newmark method. A useful aspect of
the procedure is that only the anelastic displacements history is kept. This allows an important save of
computational resources associated with the non-locality of the operators for fractional derivatives. Nu-
merical studies are presented in order to validate the curved beam model with other approaches (frames
of straight beams) as well as to analyze the influence of different parameters in the transient dynamics of
naturally curved sandwich beams.
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1 INTRODUCTION

In recent years the research community has manifested a sound interest in the investiga-
tion of dynamic behavior of slightly damped structures. Many researchers have shown that the
employment of viscoelastic materials can improve the dynamics of such structures. These ma-
terials can be incorporated into different types of structures by means of a number of methods
and techniques. For example, a common and well known treatment to reduce structural vibra-
tions is the constrained layer passive damping technique that is usually employed together with
schemes of active contrdBéz 1997 Trindade et a].2001).

The viscoelastic solids are known to manifest a certain dependence of their dynamic proper-

ties with respect to the vibration frequency in a broad frequency radge(iado et al2002).
This feature leads to the problem of the proper characterization of the damping properties of
such material. The classical models for linear viscoelastic solids, based on integer derivative
operators or convolution integrals or internal variables, have a complicated application due to
the important amount of parameters to characterize the material behavior. Under this circum-
stances the employment of viscoelastic models based on fractional derivatives applied to both
strains and stresses offer interesting simplification alternatives.

The use of the fractional derivative concept, in the context of viscoelasticity, was commonly
applied as an effective technique for curve-fitting of experimental dB&gley and Torvik
(1983 developed a one-dimensional model for a viscoelastic material using fractional deriva-
tive operators. Since then, this model for viscoelastic solids was incorporated in many structural
applications Galucio et al. 2004 as well as specific implementation of fractional constitutive
models into computational procedures such finite elements. In this context, the numerical meth-
ods in the time domain are generally associated with thien@ald definition for the fractional
order derivative of the stress-strain relation in conjunction with a time discretization scheme
(see e.gPadovar(1987). The finite element formulation proposed Byelund and Jossefson
(1997 employs the fractional calculus involving convolution integral description with a sin-
gular kernel function of Mittag-Leffler typeGalucio et al.(2004) developed a finite element
formulation to analyze the transient dynamics of a sandwich beam with viscoelastic embedded
layer whose material behavior was modeled with fractional derivative operators. They used the
four-parameters model @agley and Torvi1983 to characterize the frequency-dependence
of the viscoelastic layer. Most of the aforementioned works are restricted to bar models or
straight beam models as well as one degree of freedom models, but none of them is dedicated to
analyze the transient dynamics of common but more complex structures such as curved beams.

Studies on the dynamics of naturally curved beams deserved the attention of no few re-
searchers in the very recent years, specially in layered configuraBabs.and ThoppyR009),
among others, carried out experimental studies on the dynamics of sandwich composite curved
beams with cracks and debonded interfaceansantq2009 analyzed the dynamics of lay-
ered curved beams with piezoelectric skins by means of the Rayleigh-Ritz method. To the au-
thors’ knowledge there are no reports concerning the dynamic of sandwich curved beams with
embedded viscoelastic materials whose frequency-dependence behavior is modeled with frac-
tional derivative operators. Thus, in the present work a new model introduced and a numerical
formulation based in the method of finite elements is developed in order to study the transient
dynamics of sandwiched viscoelastic curved beams. The curved structure is composed by two
elastic layers covering a viscoelastic core, which is modeled with the formali@agiéy and
Torvik (1983. The viscoelastic core is assumed to be shear deformable for flexure whereas the
outer layers keep the conventional assumptions of Bernoulli-Euler modeling but applied to a
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beam with curved axis. Higher order curvature effects are disregarded assuming the structure
as a slim and shallow curved beam.

Numerical studies are carried out in order to analyze modeling features such as the effects of
truncation, solution convergence aspects, and validation and comparison with other approaches
in the literature as well. Other set of studies are devoted to analyze the influence of different
geometric and material parameters in the transient dynamics of viscoelastic sandwich curved
beams.

2 STRUCTURAL MODEL DEVELOPMENT

2.1 Model assumptions

In Figure 1 one can see a sketch of curved structural member. The beam is made of two
elastic layers (numbered as 1 and 2) that cover a viscoelastic core (identified with number
3). A global circumferential reference system located at poins employed. The beam is
constrained to move only in the plane XY, consequently no out-of-plane motions are involved.
In order to construct the dynamic model of a sandwich curved beam, the following assumptions
are considered:

(1) The elastic layers are perfectly bonded to the viscoelastic one.

(2) The bending shear deformability is considered only in the viscoelastic layer but neglected
in the elastic ones.

(3) A plane stress state is assumed for all layers.

(4) The longitudinal elastic modulus and the shear elastic modulus of the viscoelastic core are
proportional (this implies that Poisson coefficient is frequency-independent).

(5) The structure is featured as a shallow circular curved beam.

(6) The ratio of the thickness to the curvature radius is small, consequently no higher order
effects due to curvature are considered.

Figure 1: Beam configuration.
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2.2 Kinematic description

Taking into account the aforementioned assumptions the displacement field for a sandwich
curved beam can be written in the following forRi¢van and Corhez 2007):

’U/m(l’, Y, t) = ui(Q:? t) - (y - yl)(el(‘xa t) - Ui(l’, t)/Rl) (1)
Uyi(z,y,t) = v(z,t)

where the subscript= 1, 2, 3 stands for upper, lower and inner layer, respectively.andu,,

are the axial and transverse displacements of each layare the axial (or circumferential)
displacement of the center line of each layer (these entities can be understood more clearly by
observing Figure 2)i; are the bending rotation of each layer measured from the corresponding
centerlines of each layer.is the transverse (or radial) displacement that is common for all the
layers.y; are the distance between middle lines of adjacent layers, whByeae the curvature

radius at the center line of each layer.

Figure 2: Detail of the curved beam showing the main displacements.

According to the assumptions (2) to (5) and taking into account the condition of continuity
of the displacement field in the interfacds; and A,3 as shown in Figure 2, one can obtain the
displacements of the viscoelastic core in terms of the displacements of the elastic outer layers.
The bending rotation of the outer layers is assumed to be the same for both layers. The axial
displacement and the rotation in the centerline of the viscoelastic core can be written in the
following form:

Uy + Usg ,hl - hg h1u1 h2u2
Uz = v — s
2 T Ty
6, = ug —ur + No n 2U2 n 1U1 i )
hs 2hs 2h3hR2 2hs Ry
U1 + Uz " U/hl — N2 M haus
2R3 4R5 ARsR;  4RsRy’

whereh; are the thicknesses of the corresponding layers. The curvature radae:
Ry=R+y =R+ (hs+h)/2,

Ry =R~y =R~ (hs+ hy)/2, (3)
RgZR.
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Now introducing the mean and relative axial (or circumferential) displacements defined in
Eq. @), one can redefine all displacement as in Ej. (

’L_I/ZU1+U27 ﬂ:ul—UQ, (4)
2
_ !
Uy = u—I—E, u2:u—§
91: ’Ul, 92:1},,
-~ h hl -~ U h2 _ U (5)
—_ /___ — —_ —_—
s = U vy }&(}+2)+4RZGLZJ’
w vh JVh @

by = —

A S (R N
hs hs 4R R 2h3R, 2 2h3 Ry 27
where f_or the~ sake of notation simplicity apostrophes mean derivation with respect to the vari-
able x.h andh are defined by:

= hi+ho
B —
2 )

Notice that when the conditioR — oo the displacement field given in Eg5)(reduces to
the case of a straight beam developeddajucio et al(2004 andTrindade et al(2001).

h = hy — hy. (6)

2.3 Strain-displacement relations

The strain-displacement relationship defined according to the circumferential reference sys-
tem adopted for the curved beam can be written as:

(9um- Uyg
=\ TR)D -
(O Uai) g, OUai
Tyt = Ox R oy’

whereF = R/(R + y). However taking into account the assumptions (5) and (6), one gets
F =~ 1. It should be remembered that due to assumptiom(z), = 7,2 = 0, and~,,s is the
only relevant component of the shear strain of the beam.

Now, substituting Eq.X) into Eq. (7) the following expressions are reached:

Exxi = €D1i — (y - yi)5D2i7 (8)
VYay3 = €D33,

where,cp1; andepy; are the membrane strains and bending curvatures of each layer, respec-
tively; whereas p33 is the shear deformation of the viscoelastic core. Taking into account the
definitions of Eq. 4) and Eq. 6), cp1:, €p2; @ande ps3 can be written in the following form:

u v 1 u
ED11 = (77/4‘5) +R—1, 5D21:_UH+E (ﬂ/—i‘E) y (9)

' v 1 o
€p12 = (Ul - 5) + R—2> Epae = —V" + E (Ul - 5) ; (10)
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c —/ 1 hl + h2 ﬂ/ h1 + hg 4 U”iL 4 v
= u _— —_— _ P
s AR, ' 4R,) 2 \4R, ' 4R, 4 "Ry
€ — &_/ 1_£+£ +£UN_ u’ E+E
DB = 3 R IR) Tt T \R, TR, (11)

e — E 1+£_£ —I—UI 1+£+£ +E+i ﬂ_i_ﬁ
P38y AR, 4R, hs Rs| Rs 2h3 \Ri R/’

If hy = hy = 0 and R — oo the previous Eg. 1(1) corresponds to a simple straight shear
deformable (or Timoshenko) beam.

2.4 Constitutive description of a viscoelastic layer

The viscoelastic behavior of the core can be described by the one-dimensional constitutive
model ofBagley and Torvil(1983:

! djit) = Be(t) + 7B o) diff), (12)
whereo ande are the stress and the strain, respectively. The following four paranietefs,,
T anda are the relaxed elastic modulus, the non-relaxed elastic modulus, the relaxation time
and the fractional derivation order, respectively.

The definition of the fractional derivative of a certain functip(t) is given by the following
expression introduced by Riemman-Liouville:

d*f(t) L d (" f(s)
dto r(1—a)E/0 t—s) >
wherel is the gamma function. The fractional orders such thad < o < 1.
This four-parameter constitutive model has been shown to be an efficient tool to represent
the frequency dependence of many viscoelastic materials as one can see in the \Bawkispf
and Torvik(1983 andPritz (1996.
A given viscoelastic material can effectively characterized if the four paramgtgrg,,
T anda are identified. There are several experimental ways to identify these parameters, for
example by means of transient or harmonic dynamic tests one can obtain the longitudinal elastic
modulus (by traction and/or compression), on the other hand the shear elastic modulus can be
obtained by means of torsional tests.
The characterization of material parameters of the viscoelastic model can be performed by

applying the Fourier Transform to the Ed.2}, obtaining the following elastic complex modu-
lus:

o(t)+1¢

(13)

5oy O(w) B+ By (iwr)”
A e N W T

(14)

wheres andé are the Fourier transforms eft) ands(t), respectively. The variation df(w)

is bounded by two values (see Figure 3), i.e. the static modulus of elasHgitwith w — 0)
and the high frequency elastic modulus,, (with w — o0). These parameters are such that
E, < E, forT > 0and0 < a < 1. From the real and imaginary parts of Eq4Yit is possible

to obtain the expression for the storage modulyév) and loss modulug’;(w), which are
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Figure 3: Beam configuration.

employed to calculate the mechanical loss fagtar) = F»(w)/E;(w) that fits experimental
results.

The order of the fractional derivative can be obtained by assuming the values of storage
modulus £ (w), i.e. E, and E,, and the maximum mechanical loss factor (obtained from
experiments). Finally the relaxation timecan be estimated by minimization of difference
between theoretical and experimental data of the complex modi(u$. A more detailed
explanation of this identification procedure can be followed in the wofkadticio et al(2004).

Notice that in Figure 3 the classical Zenner model (i.e. with 1)) is included for comparison
purposes. This makes evident how effective is the fractional derivative approach to correlate the
frequency dependence of the storage modulus.

3 VARIATIONAL FORMULATION

The dynamic equations of the curved sandwich beam are derived from the Hamilton’s prin-
ciple:
to
/ (0T — U + 6W) dt = 0 (15)
t1

wheredWW is the variation of the work done by external forces acting on the bedhis the
variation of the kinetic energy antl/ is the variation of the strain energy. The variation of
strain and kinetic energies can be written as:

3 3
U= 6Ui, 6T=> 6T, (16)
1=1 i=1
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where according to the assumptions:

5T} = —/pz- (liai0tg; + tyiduy;) V. Vi=1,2,3,
1%
Ui= [ oubemdV Vi=12 (7)
174
oU; = / (02308023 + Oay30Vay3) AV .
\%

Substituting Eqg. 1) in Eg. (17) one obtains:

(@) (@) (@)
o 2l I . o, 1 ;
5T, = _/{megu Rli +R%?>ui— (11“+ éi)el-
L
o N O
- / 50; [ 1896, — [ 1 + }2%2» ii;
L

oU; = / {56,312- [Jéi)apu + Jl(i)5D2i:| + 0epai [Jz(i)gD% + Jl(i)EDlz} } dv Vi=1,2, (19)
L

}dz_

(18)
+ v (13%) } dr Vi=1,2,3,

5U3 = / {65D13 (Jég)Eplg> + (56[)23 <J2(3)€D23> + (55[)33 <J§3)€D33> } dx. (20)
L

It should be soundly noted that for the sake of algebraic simplicity #g).i¢ obtained from
0Us of Eq. (17) by assuming the core with elastic behavior (this implies a relaxation time with
value zero). The purpose of this handing in the inner layer lies in the possibility to model also
a sandwiched curved beam with elastic behavior as a limiting case of the present development.
However, in order to complete the description of the viscoelastic behavior of the core, Eq.
(20) will be reconsidered afterwards within the finite element context, taking into account the
concepts of Section 2.4.

The coefficients of Eq.18) and Eq. (9) are defined in the following form

lp;
lai
Uy
lai
The limits of these integrals,; andl,; can be easily deduced from Figure 2, the values of
vi, © = 1,2, 3 as well; whereas is the width of the beany; is the mass density of each layer,
E; means the modulus of elasticity of each elastic layers. The coeffic]é:ﬂtandjf’) can be

calculated appealing to Eg22%) with the geometric and material properties corresponding to
the core layer, whereaég) can be calculated as:

I = k3Gshsb (23)
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Note that Eq. 23) can be interpreted as the conventional shear rigidity of the Timoshenko
beam, wheré>; and ks are the transverse modulus of elasticity and the shear coefficient, re-
spectively.

4 FINITE ELEMENT FORMULATION

4.1 Basic formulation

Finite Element models can be constructed through discretization of the Hamilton principle
givenin Eq. (5). The finite element is formulated by discretizing the generalized displacements
u andz given in Eq. @) and the bending displacemanin the following form:

ﬂ — que7
v = N2qe7 (24)
U= N3qea
where:
~ I~ = 1~ T
qe = [ulyvlvUlau17u27v27v27u2] 3
Nl = [Fla()?oaanQaOaO?O]) (25)
N2 = [O7F37F470707F57F670]7
N3: [070707F17070707F2]7
and
Fl = 1_67 FQZCa
1 _ 92 3 _ _1)2
F3=1-3C"+2C, Fy = L.C(¢—1)7, (26)

Fs=¢*(3-20),  Fo=L((( 1),
¢ =z/Le.
L. is the length of the element.
Thus, the finite element representation of displacements and rotations of the layers given in
Eq. (), can be written as:

u; = Nqy1q,, 6, = Njyq..,
Ug = Nque, 92 = NIQqe’

27
uz = N31q,, 05 = N320,, (27)
v = N2qe7
where:
N = [Fl,O,0,F1/2,F2,0,O,F2/2],
N21 = [Flaoaoa_F1/2>F270707_F2/2]7 (28)

N31 = [naFla nOFéa nOinv _anla 77aF27 noFéa nOFé7 _anQ] )

N32 - [ndFla 77eF3/,7 TIeFia —Uth T]dFQJ UeF5/7 neFé7 _nCFQ] .

The membranals(yy;, i=1,2,3), bendingdp.;, i=1,2) and shear(33) components of strain
can be written in the following discretized form:

epn1 = Bnq,, ep21 = B21Q,,
ep12 = B12Q,, €p22 = Bao(Q,, (29)
ep13 = B13q,, €p23 = Basq,,

eps3z = Bs3q,,
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where:
Ny, N Ny N N N
By = — 43 4+ = - 13,72
N’11 Ll\?’+ N N e ; M NJ: By 1
—__2 i S T I - __2 18 ) =
8. — TNt N mNy N
L L 2R
neNy — mNy Ny 1N
Bas = L:’ - Lel + L;’ Bas = nyNy — nyN3 + LBQ'
In Eq. 28) and Eq. 80) the following definitions have been introduced:
hl h2 hl h2 Na 47]b 1
azl__ T ) = S o ) c = 7 = 5 B
" iR, Tary P TRR TRRy T hy M TR
h h b
Ne = _h_s + 4_}23’ Ng==—"Nd; Mg =", M= h_gv (31)
b bR
h = h3 Rg’ nl—h37 770—4-

Now substituting Eq. Z7) in Eg. (L8) one obtains the variation of the kinetic energy of the
finite element:

0T = —6q; M6, (32)
whereM., is the elementary mass matrix given by:

Me:Mel+Me2+M63 (33)

in whichM.;, M., andM .3 are the mass contributions of the three layers which can be written
in the following form:

L -
(1) (1)
Ixr / 4 I ! !

M. = / IONTING, + [él)NzTNz T (Nrinz + N2TN11> + %N2TN2 Ledc,

o L ) -

al 2)NT @) NT Ly TN 'T 152) T ]
Meo = / IPNG Ny + Ig NN, — T <N21N2 +N, N21> T FNQ Ny | LedC,
o Lt ’ i

1

Mz = / [ GINT Ny, + ININ, + 12(3)N§2N32} Led,
0

‘ (34)
where in order to contract notatidﬁ) andfﬁ) are defined as follows:
(2) (2)
iy _ [0 20 I -
Ié)_ (IO + RZ +R_12) VZ—172,3,
) (35)
L) = (If” + %) Vi=1,2.
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The elementary stiffness matrix can be obtained substitutingZ&g.a0d Eq. 29) into Eq.
(19). It should be remembered that EGO) was obtained under the assumption of elastic core.
Then, the variation of the internal energy of the finite element is:

§U. = 0q.K.q, (36)

Thus, the elementary stiffness matKx, in the limiting case of the inner layer behaving
elastically, can be written as:

Ke = K€1+K62+K63 (37)
where:

1
Ker = / [Jél)BﬂBn + Jl(l) (8?1821 + BzT1Bll) + J2(1)Bg1821] Ledc,

K= | [J7BLB, + I (BB + BEBL) + JVBLBy| Ludl,  (38)

o ]
=

1
Kes = / [J(gg) Bf3B13 + Jz(g) BzT3B23 + J?ES) BsT3B33} Ledc.
0

However, as the core is viscoelastic, thg ando,,; of Eq. (17) are no longer time in-
dependent, consequently the stiffness matrix compoken{that was derived in this section
assuming the core with elastic behavior) has to be reformulated in view of the concepts intro-
duced in Section 2.4.

Finally the virtual work of the external forces of the finite element is given by:

oW, = d6q. F. (39)

4.2 Finite element description of the viscoelastic core

The operator of the fractional derivative defined in Ef3)(can be approximated by several
procedures, for example the @wald approximation (seé€rinwald(1867). There is also a
numerical method based on the Gear scheme for the approximation of fractional derivatives in
the context of finite differences methods, as one can see in the wdaklatio et al.(2006.

The Giinwald procedure is adopted here since, being valid for all values dfis easy to
implement in a finite elements procedure. Thus, the finite difference approximation of the
Grunwald definition is given by:

Ny

def(t —a _

dJ;E) ~ (At) > Aj f(t—jAt) (40)
j=0

whereAt is the time step increment of the numerical scheme. The upper limit of the\gum

is strictly lower thanV, andA;; represents the @nwald coefficients given either in terms of

the gamma function or by the recurrence formulae, that is:

j—a—1

A]’+1 - o N or A]'Jrl = Aj (41)
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Now the following strain function as internal variable is introduced:

o
F=c— — 42
E=c¢ B (42)
such that the constitutive model described in B@®) €an be rewritten as:
WA  Ex —E
B 43
g+ 7° T o € (43)

This change of the strain variable leads to the presence of only one fractional derivative
operator in the constitutive expression of E¢3)(instead of the two fractionary operators in
Eq. (12). Using the Gianwald approximations, i.e., substituting Eq@0Yin Eq. @3), and
taking into account thatl; = 1, it is possible to arrive to the following discretized form of the

constitutive relation:
Eo —
gt — (1-— c)— (1) _ ¢ E A; Ha (n+1=7) (44)

wherec is a dimensionless constant given by

Ta
S — 45
T 4 At (45)

It should be mentioned that the @wald coefficients in Eq.4d), which are strictly decreas-
ing whenj increases, describe the fading memory phenomena. In other words, the behavior of
the viscoelastic material at a given time step depends more strongly on the recent time history

than on the distant one (s&alucio et al(2004).
Now the variation of the axial and shear stress of the core can be defined from the definition

anelastic strain in Eq4) and considering its discretized form in E42]. Thus, remembering
assumption (4) one obtains for the viscoelastic core:

ot = B (57 - 25*Y) (46)

or in extended form:

n Eoo - Eo n OO ”
U£3+1) ES (1 + CT> +1 Z A; +1€ - ])]

| E.—E
n+1 00 o n+1 oo n+1
O-‘E;y;r ) = GS (1 + CE—) xy;r ) ZAJ+1 xy;r ] ]

whereF3 andG5 are the longitudinal and shear elastic modull of the viscoelastic core that can
be written in terms of the relaxed modulfis as follows:

(47)

E,
2(1+v)

In order to derive the expression of the stiffness matrix of the core layer accounting for
the viscoelastic behavior, one should recall the definitions of the axial and shear strains of the

E3 - Eou GB - Go - (48)
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core given in Eq. § and Eq. (1). Then taking into account Eq.38) the finite element
representation of the viscoelastic strain components can be written in following form:

8%“1) (B1z — yBa3) Q¢ (nt1) (49)
wa | = Byg"tY
The anelastic s‘rrainsgg3 and fyxyS ) can be obtained with the same form given in Eq.

(49) but in terms of the discretized anelastic unkno@ﬁ?l). These unknowns depend on the
displacement history and are updated using the following expression:

E. — E, al
_(en—I—l) _ (1 o C) OOE—q (n+1) ZA]_qun-H 7) (50)
oo =1

Thus, taking into account Eq49) and Eq. 60) the stresses of the Eg41) can be written
as:

Ua(:gﬂ) = k3 (513 - yng)

Eoo - Eo (n oo n
(1“];—) " E:AJ 1 ]
E.—E, Ex "
(1 +CE—> (n+1 E Aj+ q +1— ]]

Now concerning the internal energy (see Eg7)) of the viscoelastic core and employing
Eq. (1) one has in the domain of the finite element the following expression:

(51)

st = GsBss

n n Eoo - E n
/ (BT, — yBL) 05 + BLoli | av = (1 +cE—) Kesq(" )+

Ve

(52)

63 Z Aj+1q(n+1 2

O

From Eq. 62) one can obtain the stiffness matrix component of the curved finite element
with the viscoelastic core. Notice thidt; is the stiffness matrix component of the core defined

in Eq. (39).
4.3 Discretized equations of motion and algorithm implementation

Once the elementary mass and stiffness matrices are completely formulated, after putting
together Eq. 2), Eq. 36), Eq. 39), Eq. 62) and performing some algebraic handling one
obtains the elementary equation of motion as:

Me'-gn—f—l) + (Ke + KeS) qntD) = Flth) 4 |§((3n+1) (53)

whereM,. andK . are the mass matrix and the stiffness matrix of the element as defined in
Eg. 39) and Eqg. 62). The modified stiffness matrik .; and loading vectoF ") that appear
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from the viscoelastic behavior of the inner layer, are given by:

F(n+1 (54)

632143 1q (1)

It is interesting to note that Eq.58) contains in a unified fashion the cases of sandwich
beams with viscoelastic core or elastic core. For the case of elastl(z(ngmdF ™) vanish
since the dimensionless constant 0, consequently Eq5Q) is reduced to a classical equation
of motion.

Appealing to the common assembly procedure B§) becomes in:

MO (1) | + (K +Ks) Q(nth) — pln+1) 4 EO+D) (55)
whereM andK are the global mass and stiffness matrices, respectiiglys the global stiff-
ness matrix of the viscoelastic coR@,is the global vector of degrees of freedom, & the
global loading vector anB is the global modified loading vector. Super-indexes in the previous
equations intend for the'” calculation step.

In order to implement the algorithm for calculation of transient dynamics, the Newmark
method is employed. However some changes in the classical Newmark scheme should be car-
ried out in order to tackle the problem of the viscoelastic core modeled with fractional calculus
(Dell et al, 2003 Galucio et al.2004). For detailed descriptions the reader should see the work
of Dell et al.(2003. Thus, in Figure 4 one can see a flux diagram of the resolution algorithm.

5 NUMERICAL ANALYSIS AND PARAMETRIC STUDIES
5.1 Validation and comparison of the present model

In this section numerical computations are performed in order to validate and compare the
model with other studies of the international literature.

The first example corresponds to a simply supported straight viscoelastic Timoshenko beam
(Chen 1995 Galucio et al. 2004. This implies to set, in the present mod#&l,— oo and to
eliminate the influence of the external layers (or simplyiset h, = 0). The length, width and
height of the beam aré = 10 m, b = 2 m andhs = 50 cm. The shear coefficient of the beam
is defined byks = 10(1 + v)/(12 + 11v). The beam is modeled with 50 finite elements with
an external uniform step loading &f; = 10 H(¢) N/m on its top sideH(¢) is the Heaviside
step function. The viscoelastic material is characterized by means of the following properties:
E, =19.6 M Pa, E,, = 98 M Pa, p = 500 kg/m3, v = 0.3 andT = 2.24 s.

In Figure 5 the time-dependent displacements at the center of the beam for a standard solid
model (¢« = 1.00) and for a fractional derivative onex(= 0.75 anda = 0.50) are shown. In
this Figure the responses obtained with the present approach and with the apprGadbincad
et al.(2004) are compared. As one can see both responses are in well agreement.

The second example corresponds to a sandwich shallow arc. The arc is composed by a vis-
coelastic core (specimen of 3W7) number ISD112 a27°) with a thickness 0§ mm bounded
by metallic (aluminium) layers with thickness 26 mm. The width of the arc i$ = 20 mm
the curvature radius and the subtended ardare2.525 m and® = 0.4 rad. The mechanical
characteristics for the elastic faces are 2690 kg/m?, v = 0.345 andE = 70.3 x 10°M Pa.

The mass density and Poisson coefficient of the viscoelastic material-arg5600kg/m? and
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Figure 4: Flow-chart of the modified Newmark method.

= 0.5, whereas the material parameters for the fractional derivative viscoelastic model are
identified Galucio et al. 2004 asE, = 1.5 M Pa, E,, = 69.9495 M Pa, o« = 0.7915 and

= 1.4052 x 1072 ms. The arc modeled with fifty finite elements is subjected to a unitary
Heaviside step flexural point load located at the center of the arc and directed towards the cen-
ter of curvature.

In Figure 6 one can see the radial displacement of the node where the load is placed. The
response obtained with curved elements is tested with a frame model of straight sandwich beam
elements Del et al, 2003 Galucio et al. 2004 programmed ad-hoc. It is possible to note
the agreement between both approaches. It should be mentioned that both approaches con-
verge monotonically to the same values as the number of elements in the models are increased.
Although the frame approach proved to be faster than the arc approach, this aspect may be
associated with the shape functions employed here for the arc. These shape functions can be
replaced in the arc element in order to improve approximations and accelerate the convergence.
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Figure 5: Comparison of displacements at the center of the beam.

However this is matter of future extensions.

5.2 Parametric studies on the dynamics of sandwich curved beams

In this section some parametric studies are carried out in order to characterize the dynamics
of curved viscoelastic sandwich beams. In Figure 7 one can see a sketch of a shallow curved
beam with clamped ends. The horizontal distangebetween the geometric centers of the
clamped ends is a constant while the shallowness parametaran vary form zero (i.e. a
straight beam) to a certain value in terms of a percentadg;phormally no longer tha@0%.

The first example of this section corresponds to a fully viscoelastic arc. The width and
height of the beam are = 2 m andh; = 50 ¢m. The horizontal distance i5, = 10 m.

Since this example is suited only for viscoelastic arcs, the influence of elastic external layers is
eliminated (i.eh; = hy = 0). The properties of the viscoelastic material ag:= 19.6 M Pa,

E. =98 M Pa, p =500 kg/m?3, v = 0.3 andr = 2.24 s. The shear coefficient of the beam is
defined byks = 10(1+v)/(12+ 11v). The beam is subjected to an outward radial and uniform
step-load ofFy = 1000H(t) N/m. The curved arc is modeled with 100 finite elements, in
order to have quite precise results.

In Figure 8 one can see the history of the radial displacement in the middle of the arc for
the case where = 0.5 and for four different shallowness ratios. As one can see the transient
oscillation period can be substantially diminished for the curved cases. In this last figure, an
interesting aspect related to the relationship between the stationary response and arc dimensions
can be also regarded. Note that/ag/L;, — 0 (or R — o) the lengthL of the curved beam
(i,e. L = R3®, where® is the subtended angle) is such tat— L,. Thus with a small
change in the lengtlh with respect to the straight beam cage=€ L,) one gets an important
reduction in the displacement response. For example, notice that for thé\gdge = 0.05
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Figure 6: Comparison of displacements at the center of the shallow arc.

one can calculate the ratio arc lengthltp, thatisZ/L, = 1.0066; in other words this means
that with a slightly curved beam with an arc length less th#nlarger than the length of the
straight beam one gets displacements that can be les$b@af the corresponding values of
the straight beam case (compare responseés:gfL, = 0 andAg/L, = 0.05 in Figure 8)

The second example of the transient behavior of sandwich curved beams corresponds to a
shallow arc with a viscoelastic core (specimen of 8 number ISD112 a27°) bounded by
aluminum layers. The material data for this calculation can be taken from the second example in
the previous subsection. The fractional derivative order for the viscoelastic material (s79.
Considering once again Figure 7, the geometry of the structure is suclh;that 1 m and
Ag/Ly, = 0.10, the width isb = 40 mm and the height i& = 20 mm (i.e. h = hy + ho + h3).

The elastic external layers are such that= h,. The structure is subjected to a radial step load

Figure 7: Geometric characterization of shallow circular arc.
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Figure 8: History of displacements at the center of the beamy fer0.5 and different shallowness ratidsg / L},

of value Fr = 10H(t) N located at center of the beam and directed outwards. The calculation

is carried out over a period = 500 ms which proved to be enough to reach a stationary
constant response for all the analyzed cases. In this study the influence of the thickness of the
viscoelastic core is analyzed.

In Figure 9 the time history of radial displacements at the loading point is depicted. The
radial displacements of this figure are re-scaled by normalizing them with respect to the corre-
sponding stationary radial displacement (veL/2,t)/v(L/2,t500)), in order to have the same
screen in all the cases, for comparative purposes. Thus, for a veryitiiin £ 0.01) viscoelas-
tic layer it is possible to see a very short transient that ends #fters, whereas for the other
cases the transient periods are larger with a high oscillatory behavior.

6 CONCLUSIONS

In the present paper a model of sandwich curved beams with viscoelastic layer for tran-
sient dynamic analysis has been proposed. The structural model consist of three layers, where
a viscoelastic core is bounded by two elastic layers. The behavior of the core has been de-
scribed employing a four-parameters viscoelastic constitutive model defined in terms of frac-
tional derivative operators of strains and stresses. The curved beam model has been numerically
implemented in the context of the finite element method. Thereafter the constitutive model has
been rearranged in order to be represented only in terms displacements. Thus only anelastic
displacements had to be kept to represent the dynamics of the viscoelastic sandwich curved
beam. The present model contains the straight beam and bar models as particular cases when
the curvature radius is set to infinity (in practice to a large value). Numerical computations have
been carried out to show the usefulness of the present approach as well as the transient behavior
of the curved viscoelastic sandwich beams.
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