Comparación de Esquemas de Segundo Orden Basados en Diferencias Finitas y Volúmenes Finitos para la Solución de la Ecuación de Vlasov en el Caso No Magnetizado

Denis Lorenzón, Sergio A. Elaskar

Abstract


La ecuación de Vlasov describe la evolución temporal de la función de distribución de las partículas en un plasma no colisional, y provee una descripción cinética completa del plasma cuando la dinámica de las partículas está gobernada por interacciones electromagnéticas de largo alcance. Si los campos magnéticos auto generados y externos son despreciables, entonces la fuerza de Lorentz se debe sólo al campo eléctrico, el cual puede computarse a partir de la ecuación de Poisson en el caso no relativista. En este artículo, se presentan discretizaciones de segundo orden, basadas en diferencias finitas y en volúmenes finitos, para la resolución del sistema Vlasov-Poisson sobre un espacio de fases bidimensional. La precisión de los esquemas se evalúa y compara a través del problema de pruebas clásico del amortiguamiento de Landau. Además, son examinadas algunas propiedades de conservación importantes del sistema Vlasov-Poisson, como el principio del máximo y la conservación de momentos de la función de distribución.

Full Text:

PDF



Asociación Argentina de Mecánica Computacional
Güemes 3450
S3000GLN Santa Fe, Argentina
Phone: 54-342-4511594 / 4511595 Int. 1006
Fax: 54-342-4511169
E-mail: amca(at)santafe-conicet.gov.ar
ISSN 2591-3522